An Operator-Theoretic Proof of an Estimate on the Transfer Operator
Let ρ be a nonnegative number; denote ⌈1/ρ⌉ as the smallest integer which is larger than 1/ρ. Let k=max(2⌈1/ρ⌉, 4), and let V be a positive potential on RN of class Ck such that for all multi-index α satisfying |α|⩽k we have |∂αV(x)|⩽Cα(1+V(x))(1−ρ|α|)+. We prove that‖e−tVe2tΔe−tV−e2t(−V+Δ)‖L(L2)=O(...
Saved in:
Published in | Journal of functional analysis Vol. 165; no. 2; pp. 240 - 257 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
10.07.1999
|
Online Access | Get full text |
Cover
Loading…
Summary: | Let ρ be a nonnegative number; denote ⌈1/ρ⌉ as the smallest integer which is larger than 1/ρ. Let k=max(2⌈1/ρ⌉, 4), and let V be a positive potential on RN of class Ck such that for all multi-index α satisfying |α|⩽k we have |∂αV(x)|⩽Cα(1+V(x))(1−ρ|α|)+. We prove that‖e−tVe2tΔe−tV−e2t(−V+Δ)‖L(L2)=O(t1+2inf(ρ, 1/2)) as t decreases to zero. Our techniques rely on estimates on commutators. Copyright 1999 Academic Press.
Soit ρ un réel strictement positif, notons ⌈1/ρ⌉ le plus petit entier supérieur ou égal à 1/ρ. Soit V un potentiel positif sur RN de classe Ck tel que pour tout multiindice α satisfaisant |α|⩽k on ait |∂αV(x)|⩽Cα(1+V(x))(1−ρ|α|)+. Nous prouvons que‖e−tVe2tΔe−tV−e2t(−V+Δ)‖L(L2)=O(t1+2inf(ρ, 1/2))quand t decroı̂t vers zéro. Nos techniques utilisent des estimations sur des commutateurs. |
---|---|
ISSN: | 0022-1236 1096-0783 |
DOI: | 10.1006/jfan.1999.3412 |