A 3D mammalian cell separator biochip
The dissimilar cytoskeletal architecture in diverse cell types induces a difference in their deformability that presents a viable approach to separate cells in a non-invasive manner. We report on the design and fabrication of a robust and scalable device capable of separating a heterogeneous populat...
Saved in:
Published in | Lab on a chip Vol. 12; no. 5; pp. 948 - 953 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
07.03.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The dissimilar cytoskeletal architecture in diverse cell types induces a difference in their deformability that presents a viable approach to separate cells in a non-invasive manner. We report on the design and fabrication of a robust and scalable device capable of separating a heterogeneous population of cells with variable degree of deformability into enriched populations with deformability above a certain threshold. The three dimensional device was fabricated in fused silica by femtosecond laser direct writing combined with selective chemical etching. The separator device was evaluated using promyelocytic HL60 cells. Using flow rates as large as 167 μL min(-1), throughputs of up to 2800 cells min(-1) were achieved at the device output. A fluorescence-activated cell sorting (FACS) viability analysis on the cells revealed 81% of the population maintain cellular integrity after passage through the device. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1473-0197 1473-0189 |
DOI: | 10.1039/c2lc20939j |