Efficient estimation method for generalized ARFIMA models
This paper focuses on pretest and shrinkage estimation strategies for generalized autoregressive fractionally integrated moving average (GARFIMA) models when some of the regression parameters are possible to restrict to a subspace. These estimation strategies are constructed on the assumption that s...
Saved in:
Published in | Communications in statistics. Theory and methods Vol. 52; no. 23; pp. 8515 - 8537 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
02.12.2023
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0361-0926 1532-415X |
DOI | 10.1080/03610926.2022.2064503 |
Cover
Abstract | This paper focuses on pretest and shrinkage estimation strategies for generalized autoregressive fractionally integrated moving average (GARFIMA) models when some of the regression parameters are possible to restrict to a subspace. These estimation strategies are constructed on the assumption that some covariates are not statistically significant for the response. To define the pretest and shrinkage estimators, we fit two models: one includes all the covariates and the others are subject to linear constraint based on the auxiliary information of the insignificant covariates. The unrestricted and restricted estimators are then combined optimally to get the pretest and shrinkage estimators. We enlighten the statistical properties of the shrinkage and pretest estimators in terms of asymptotic bias and risk. We examine the comparative performance of pretest and shrinkage estimators with respect to unrestricted maximum partial likelihood estimator (UMPLE). We show that the shrinkage estimators have a lower relative mean squared error as compared to the UMPLE when the number of significant covariates exceeds two. Monte Carlo simulations are conducted to examine the relative performance of the proposed estimators to the UMPLE. An empirical application is used for the usefulness of our proposed estimation strategies. |
---|---|
AbstractList | This paper focuses on pretest and shrinkage estimation strategies for generalized autoregressive fractionally integrated moving average (GARFIMA) models when some of the regression parameters are possible to restrict to a subspace. These estimation strategies are constructed on the assumption that some covariates are not statistically significant for the response. To define the pretest and shrinkage estimators, we fit two models: one includes all the covariates and the others are subject to linear constraint based on the auxiliary information of the insignificant covariates. The unrestricted and restricted estimators are then combined optimally to get the pretest and shrinkage estimators. We enlighten the statistical properties of the shrinkage and pretest estimators in terms of asymptotic bias and risk. We examine the comparative performance of pretest and shrinkage estimators with respect to unrestricted maximum partial likelihood estimator (UMPLE). We show that the shrinkage estimators have a lower relative mean squared error as compared to the UMPLE when the number of significant covariates exceeds two. Monte Carlo simulations are conducted to examine the relative performance of the proposed estimators to the UMPLE. An empirical application is used for the usefulness of our proposed estimation strategies. |
Author | Pandher, S. S. Budsaba, K. Hossain, S. Volodin, A. |
Author_xml | – sequence: 1 givenname: S. S. surname: Pandher fullname: Pandher, S. S. organization: Department of Mathematics and Statistics, University of Regina – sequence: 2 givenname: S. surname: Hossain fullname: Hossain, S. organization: Department of Mathematics and Statistics, University of Winnipeg – sequence: 3 givenname: K. surname: Budsaba fullname: Budsaba, K. organization: Department of Mathematics and Statistics, Thammasat University – sequence: 4 givenname: A. surname: Volodin fullname: Volodin, A. organization: Department of Mathematics and Statistics, University of Regina |
BookMark | eNp9kM1KAzEUhYNUsFYfQRhwPTU_k2Sys5RWCxVBFNyFNJNoykxSkylSn94MrVs3927OOfee7xKMfPAGgBsEpwjW8A4ShqDAbIohxnmwikJyBsaIElxWiL6PwHjQlIPoAlymtIUQUV6TMRALa512xveFSb3rVO-CLzrTf4amsCEWH8abqFr3Y5pi9rJcPc2KLjSmTVfg3Ko2mevTnoC35eJ1_liunx9W89m61LhmfVlRAaElmgnTWCWEhYQ2mkKsFeX5QcI451QTuqn5pskNEFUbbiqNq5oJhsgE3B5zdzF87fOTchv20eeTEtecYoQwo1lFjyodQ0rRWLmLuU08SATlQEn-UZIDJXmilH33R5_zuW2nvkNsG9mrQxuijcprlyT5P-IXRzFtiQ |
Cites_doi | 10.1046/j.0143-9782.2003.00344.x 10.1002/0471266981 10.1017/CBO9780511802256 10.2307/2533393 10.1081/SAC-100107781 10.1006/jmva.1998.1765 10.1007/s11749-008-0112-z 10.1016/j.spl.2014.05.020 10.1093/biomet/68.1.165 10.1016/j.jspi.2018.10.001 10.1007/978-1-4899-3242-6 10.3150/08-BEJ143 10.1287/mnsc.1060.0520 10.1016/S0167-9473(02)00212-8 10.1007/s00184-012-0425-5 10.1080/10485250601046752 10.1080/00949655.2014.971326 10.1007/s00180-013-0408-7 10.1002/9780470131466 10.1111/j.1467-9892.1980.tb00297.x 10.1007/978-1-4757-3454-6 10.1214/009053604000000067 10.1111/j.2517-6161.1996.tb02080.x 10.1016/S0169-2070(99)00048-5 10.1111/anzs.12169 |
ContentType | Journal Article |
Copyright | 2022 Taylor & Francis Group, LLC 2022 2022 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2022 Taylor & Francis Group, LLC 2022 – notice: 2022 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1080/03610926.2022.2064503 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics |
EISSN | 1532-415X |
EndPage | 8537 |
ExternalDocumentID | 10_1080_03610926_2022_2064503 2064503 |
Genre | Research Article |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29F 2DF 30N 4.4 5GY 5VS 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFIM ABHAV ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADGTB ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS E~A E~B F5P GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NY~ O9- QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF TWZ UPT UT5 UU3 WH7 ZGOLN ZL0 ~02 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV AMVHM CITATION K1G 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c286t-45900f3c69edfa99f035dc502ca57532367775c35b87bd20215ab7e4c24869613 |
ISSN | 0361-0926 |
IngestDate | Wed Aug 13 06:20:02 EDT 2025 Tue Jul 01 00:46:55 EDT 2025 Wed Dec 25 09:02:53 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 23 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c286t-45900f3c69edfa99f035dc502ca57532367775c35b87bd20215ab7e4c24869613 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2875211265 |
PQPubID | 186202 |
PageCount | 23 |
ParticipantIDs | crossref_primary_10_1080_03610926_2022_2064503 proquest_journals_2875211265 informaworld_taylorfrancis_310_1080_03610926_2022_2064503 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-02 |
PublicationDateYYYYMMDD | 2023-12-02 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Communications in statistics. Theory and methods |
PublicationYear | 2023 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | e_1_3_2_28_1 e_1_3_2_29_1 Judge G. G. (e_1_3_2_15_1) 1978 e_1_3_2_20_1 e_1_3_2_21_1 e_1_3_2_22_1 e_1_3_2_24_1 e_1_3_2_25_1 e_1_3_2_26_1 Yoon Y. J. (e_1_3_2_33_1) 2017; 46 e_1_3_2_16_1 e_1_3_2_9_1 Friedman J. (e_1_3_2_11_1) 2010; 533 e_1_3_2_17_1 e_1_3_2_8_1 e_1_3_2_18_1 e_1_3_2_7_1 e_1_3_2_19_1 e_1_3_2_2_1 e_1_3_2_31_1 e_1_3_2_30_1 e_1_3_2_10_1 e_1_3_2_32_1 e_1_3_2_6_1 e_1_3_2_12_1 e_1_3_2_5_1 Hall P (e_1_3_2_13_1) 1980 e_1_3_2_4_1 e_1_3_2_14_1 Paolella M. (e_1_3_2_23_1) 2019 e_1_3_2_3_1 Sheng H. (e_1_3_2_27_1) 2011 |
References_xml | – ident: e_1_3_2_10_1 doi: 10.1046/j.0143-9782.2003.00344.x – ident: e_1_3_2_16_1 doi: 10.1002/0471266981 – ident: e_1_3_2_32_1 doi: 10.1017/CBO9780511802256 – volume: 46 start-page: 3479 year: 2017 ident: e_1_3_2_33_1 article-title: Adaptive LASSO for linear regression models with ARMA-GARCH errors publication-title: Communications in Statistics - Simulation and Computation – ident: e_1_3_2_18_1 doi: 10.2307/2533393 – ident: e_1_3_2_25_1 doi: 10.1081/SAC-100107781 – ident: e_1_3_2_9_1 doi: 10.1006/jmva.1998.1765 – ident: e_1_3_2_26_1 doi: 10.1007/s11749-008-0112-z – ident: e_1_3_2_8_1 doi: 10.1016/j.spl.2014.05.020 – ident: e_1_3_2_14_1 doi: 10.1093/biomet/68.1.165 – ident: e_1_3_2_24_1 doi: 10.1016/j.jspi.2018.10.001 – ident: e_1_3_2_19_1 doi: 10.1007/978-1-4899-3242-6 – ident: e_1_3_2_31_1 doi: 10.3150/08-BEJ143 – ident: e_1_3_2_3_1 doi: 10.1287/mnsc.1060.0520 – volume: 533 start-page: 1 year: 2010 ident: e_1_3_2_11_1 article-title: Regularization paths for generalized linear models via coordinate descent publication-title: Journal of Statistical Software – ident: e_1_3_2_5_1 doi: 10.1016/S0167-9473(02)00212-8 – volume-title: Linear models and time series analysis: Regression, ANOVA, ARMA and GARCH year: 2019 ident: e_1_3_2_23_1 – ident: e_1_3_2_20_1 doi: 10.1007/s00184-012-0425-5 – ident: e_1_3_2_21_1 – ident: e_1_3_2_2_1 doi: 10.1080/10485250601046752 – ident: e_1_3_2_28_1 doi: 10.1080/00949655.2014.971326 – volume-title: The statistical implication of pre-test and stein-rule estimators in econometrics year: 1978 ident: e_1_3_2_15_1 – ident: e_1_3_2_4_1 doi: 10.1007/s00180-013-0408-7 – start-page: 95 volume-title: Fractional processes and fractional-order signal processing: Techniques and applications year: 2011 ident: e_1_3_2_27_1 – volume-title: Martingale limit theory arid its applications year: 1980 ident: e_1_3_2_13_1 – ident: e_1_3_2_22_1 doi: 10.1002/9780470131466 – ident: e_1_3_2_12_1 doi: 10.1111/j.1467-9892.1980.tb00297.x – ident: e_1_3_2_7_1 doi: 10.1007/978-1-4757-3454-6 – ident: e_1_3_2_6_1 doi: 10.1214/009053604000000067 – ident: e_1_3_2_30_1 doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: e_1_3_2_17_1 doi: 10.1016/S0169-2070(99)00048-5 – ident: e_1_3_2_29_1 doi: 10.1111/anzs.12169 |
SSID | ssj0015783 |
Score | 2.3282948 |
Snippet | This paper focuses on pretest and shrinkage estimation strategies for generalized autoregressive fractionally integrated moving average (GARFIMA) models when... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 8515 |
SubjectTerms | ARFIMA asymptotic distributional bias and risk Estimators Monte Carlo simulation partial likelihood shrinkage and pretest estimators Statistical analysis |
Title | Efficient estimation method for generalized ARFIMA models |
URI | https://www.tandfonline.com/doi/abs/10.1080/03610926.2022.2064503 https://www.proquest.com/docview/2875211265 |
Volume | 52 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELa6cGEPiMei5akcuKZK_EiaY0GtCoKCIF31ZjlOsuJSEA1C4tczfiRxVLQLXKLKbR1l5st47Jn5BqHTDFbNEvxaXwiZ-7SgAdhBkvskIVQ1hMRM6CzfaTSZ0cs5m_d6r251SZX15duHdSXf0SqMgV5VlewXNNtMCgPwGfQLV9AwXD-l45Hmf1DRfMWVYYoQbU9onT7413BKP7yBVzm8G19cD03nm6XrknZKRHR2rCoyMvzNfVu7r0MMZuLGB7-FMavw-_YAdQKLrnjoHqqeveRLkYnOoeofMLq55S9wTx4w0Vkc7T41XWkC4mQimYKs0A8SbJmua_uKffAZ5q4BZtgBGiaOOQV3kLlLMzMEMStm3-ZJEsUdj1XiCVY1dhFlAWnXuTq2P73h49nVFU9H8_QHWsdxrOP7JJg24ScwY6avtn2CuvRLkbJ_dJOOU9OhvF1Z4rXfkm6hTbvh8IYGPduoVyx20M_rhq13uYM27huF76KkAZXXgsozuvfgjp4DKs-AyjOg-oVm41F6PvFtfw1f4kFU-VR1jC2JjJIiL0WSlAFhuWQBlgLeUqK4_eKYScKyQZzlWHmHIosLKjEdRAn4gXtobfG4KH4jL5QwkToQKyRVe2oh4LesAPXRMMwDto_6tYD4k6FR4WHNTmslypVEuZXoPkpcMfJKg600OOPkP_89qmXO7du65Bg25ljVy7GDf399iDZasB-hter5pTgGx7PKTjRI3gGfC3ly |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8JAEN0YPIgHP1AjitqD12K7H4U9EgMBBQ4GEm6b7XZrjAkaKRd-vTPdloDGeODe3bS7szNvtjPvEXIfQ9RMAdf6WpvE55YH4AdZ4jPJOApCUqHzKt9x1J_yp5mYbfTCYFkl5tCpI4rIfTUebryMLkviHsDrhoGkWGFAsZkq4gIJP_cFYHe0chaM138SwCKdRHIEaTOMKbt4_ppmKz5tsZf-8tZ5COodE1O-vKs8eW8us7hpVj94HXf7uhNyVCBUr-NM6pTs2XmNHI7W9K6LGqkiRHUMz2dEdnMWCgheHjJ2uFZIzylTe_Bd3qtjtn5b2cTrvPQGo46X6-8szsm015089v1CkME3tB1lPkeJ0ZSZSNok1VKmAROJEQE1GraVIRlcqyUME3G7FScU4YSOW5YbytuRBOBwQSrzj7m9JF5oYCK8QbGGYxKmNTwrLKArHoZJIOqkWW6D-nS8Gyos6UyLBVK4QKpYoDqRm5ulsvzCI3XqJIr9M7ZR7qwqjvBCQSoJ0CakkbjaYeo7ctCfjIZqOBg_X5MqitXnxTC0QSrZ19LeAKTJ4tvcZr8Bef3kNg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFB2kgtSFj6pYn7Nwm5rMK82yaEOrtohYcDdMJhMRoRaTbvr13skkxSriovvMkHnde25y5hyErhLImhngWk8pnXrMMB_iIE09GlFmDSEJVyXLdywGE3b3wms2YV7RKm0NnTmhiDJW28M9S7OaEXcNQTfwI2IJBsTepRKMW73PTQHwxLL6qD9e_kiADekckgVUzdCmvsTzVzcr6WlFvPRXsC4zULyLkvrdHfHkvTMvko5e_JB1XGtwe2inwqe45zbUPtow0xbaHi3FXfMWalqA6vSdD1DULzUoIHVhq9fhLkJi50uNYVj41elavy1MintP8XDUw6X7Tn6IJnH_-WbgVXYMniZdUXjMGoxmVIvIpJmKosynPNXcJ1rBolIrBReGXFOedMMkJRZMqCQ0TBPWFRHAhiPUmH5MzTHCgYaO7PcTo5ktwZSCZ7kBbMWCIPV5G3XqVZAzp7ohg1rMtJogaSdIVhPURtH3tZJF-bkjc94kkv7T9qxeWFkd4FxCIQnAJiCCn6zR9SXaeryN5cNwfH-KmtapvmTCkDPUKD7n5hzwTJFclDv2C6884to |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+estimation+method+for+generalized+ARFIMA+models&rft.jtitle=Communications+in+statistics.+Theory+and+methods&rft.au=Pandher%2C+S+S&rft.au=Hossain%2C+S&rft.au=Budsaba%2C+K&rft.au=Volodin%2C+A&rft.date=2023-12-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0361-0926&rft.eissn=1532-415X&rft.volume=52&rft.issue=23&rft.spage=8515&rft.epage=8537&rft_id=info:doi/10.1080%2F03610926.2022.2064503&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0926&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0926&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0926&client=summon |