Efficient estimation method for generalized ARFIMA models

This paper focuses on pretest and shrinkage estimation strategies for generalized autoregressive fractionally integrated moving average (GARFIMA) models when some of the regression parameters are possible to restrict to a subspace. These estimation strategies are constructed on the assumption that s...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Theory and methods Vol. 52; no. 23; pp. 8515 - 8537
Main Authors Pandher, S. S., Hossain, S., Budsaba, K., Volodin, A.
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 02.12.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0361-0926
1532-415X
DOI10.1080/03610926.2022.2064503

Cover

Abstract This paper focuses on pretest and shrinkage estimation strategies for generalized autoregressive fractionally integrated moving average (GARFIMA) models when some of the regression parameters are possible to restrict to a subspace. These estimation strategies are constructed on the assumption that some covariates are not statistically significant for the response. To define the pretest and shrinkage estimators, we fit two models: one includes all the covariates and the others are subject to linear constraint based on the auxiliary information of the insignificant covariates. The unrestricted and restricted estimators are then combined optimally to get the pretest and shrinkage estimators. We enlighten the statistical properties of the shrinkage and pretest estimators in terms of asymptotic bias and risk. We examine the comparative performance of pretest and shrinkage estimators with respect to unrestricted maximum partial likelihood estimator (UMPLE). We show that the shrinkage estimators have a lower relative mean squared error as compared to the UMPLE when the number of significant covariates exceeds two. Monte Carlo simulations are conducted to examine the relative performance of the proposed estimators to the UMPLE. An empirical application is used for the usefulness of our proposed estimation strategies.
AbstractList This paper focuses on pretest and shrinkage estimation strategies for generalized autoregressive fractionally integrated moving average (GARFIMA) models when some of the regression parameters are possible to restrict to a subspace. These estimation strategies are constructed on the assumption that some covariates are not statistically significant for the response. To define the pretest and shrinkage estimators, we fit two models: one includes all the covariates and the others are subject to linear constraint based on the auxiliary information of the insignificant covariates. The unrestricted and restricted estimators are then combined optimally to get the pretest and shrinkage estimators. We enlighten the statistical properties of the shrinkage and pretest estimators in terms of asymptotic bias and risk. We examine the comparative performance of pretest and shrinkage estimators with respect to unrestricted maximum partial likelihood estimator (UMPLE). We show that the shrinkage estimators have a lower relative mean squared error as compared to the UMPLE when the number of significant covariates exceeds two. Monte Carlo simulations are conducted to examine the relative performance of the proposed estimators to the UMPLE. An empirical application is used for the usefulness of our proposed estimation strategies.
Author Pandher, S. S.
Budsaba, K.
Hossain, S.
Volodin, A.
Author_xml – sequence: 1
  givenname: S. S.
  surname: Pandher
  fullname: Pandher, S. S.
  organization: Department of Mathematics and Statistics, University of Regina
– sequence: 2
  givenname: S.
  surname: Hossain
  fullname: Hossain, S.
  organization: Department of Mathematics and Statistics, University of Winnipeg
– sequence: 3
  givenname: K.
  surname: Budsaba
  fullname: Budsaba, K.
  organization: Department of Mathematics and Statistics, Thammasat University
– sequence: 4
  givenname: A.
  surname: Volodin
  fullname: Volodin, A.
  organization: Department of Mathematics and Statistics, University of Regina
BookMark eNp9kM1KAzEUhYNUsFYfQRhwPTU_k2Sys5RWCxVBFNyFNJNoykxSkylSn94MrVs3927OOfee7xKMfPAGgBsEpwjW8A4ShqDAbIohxnmwikJyBsaIElxWiL6PwHjQlIPoAlymtIUQUV6TMRALa512xveFSb3rVO-CLzrTf4amsCEWH8abqFr3Y5pi9rJcPc2KLjSmTVfg3Ko2mevTnoC35eJ1_liunx9W89m61LhmfVlRAaElmgnTWCWEhYQ2mkKsFeX5QcI451QTuqn5pskNEFUbbiqNq5oJhsgE3B5zdzF87fOTchv20eeTEtecYoQwo1lFjyodQ0rRWLmLuU08SATlQEn-UZIDJXmilH33R5_zuW2nvkNsG9mrQxuijcprlyT5P-IXRzFtiQ
Cites_doi 10.1046/j.0143-9782.2003.00344.x
10.1002/0471266981
10.1017/CBO9780511802256
10.2307/2533393
10.1081/SAC-100107781
10.1006/jmva.1998.1765
10.1007/s11749-008-0112-z
10.1016/j.spl.2014.05.020
10.1093/biomet/68.1.165
10.1016/j.jspi.2018.10.001
10.1007/978-1-4899-3242-6
10.3150/08-BEJ143
10.1287/mnsc.1060.0520
10.1016/S0167-9473(02)00212-8
10.1007/s00184-012-0425-5
10.1080/10485250601046752
10.1080/00949655.2014.971326
10.1007/s00180-013-0408-7
10.1002/9780470131466
10.1111/j.1467-9892.1980.tb00297.x
10.1007/978-1-4757-3454-6
10.1214/009053604000000067
10.1111/j.2517-6161.1996.tb02080.x
10.1016/S0169-2070(99)00048-5
10.1111/anzs.12169
ContentType Journal Article
Copyright 2022 Taylor & Francis Group, LLC 2022
2022 Taylor & Francis Group, LLC
Copyright_xml – notice: 2022 Taylor & Francis Group, LLC 2022
– notice: 2022 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/03610926.2022.2064503
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
EISSN 1532-415X
EndPage 8537
ExternalDocumentID 10_1080_03610926_2022_2064503
2064503
Genre Research Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
TWZ
UPT
UT5
UU3
WH7
ZGOLN
ZL0
~02
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
AMVHM
CITATION
K1G
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c286t-45900f3c69edfa99f035dc502ca57532367775c35b87bd20215ab7e4c24869613
ISSN 0361-0926
IngestDate Wed Aug 13 06:20:02 EDT 2025
Tue Jul 01 00:46:55 EDT 2025
Wed Dec 25 09:02:53 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 23
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-45900f3c69edfa99f035dc502ca57532367775c35b87bd20215ab7e4c24869613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2875211265
PQPubID 186202
PageCount 23
ParticipantIDs crossref_primary_10_1080_03610926_2022_2064503
proquest_journals_2875211265
informaworld_taylorfrancis_310_1080_03610926_2022_2064503
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-02
PublicationDateYYYYMMDD 2023-12-02
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-02
  day: 02
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in statistics. Theory and methods
PublicationYear 2023
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References e_1_3_2_28_1
e_1_3_2_29_1
Judge G. G. (e_1_3_2_15_1) 1978
e_1_3_2_20_1
e_1_3_2_21_1
e_1_3_2_22_1
e_1_3_2_24_1
e_1_3_2_25_1
e_1_3_2_26_1
Yoon Y. J. (e_1_3_2_33_1) 2017; 46
e_1_3_2_16_1
e_1_3_2_9_1
Friedman J. (e_1_3_2_11_1) 2010; 533
e_1_3_2_17_1
e_1_3_2_8_1
e_1_3_2_18_1
e_1_3_2_7_1
e_1_3_2_19_1
e_1_3_2_2_1
e_1_3_2_31_1
e_1_3_2_30_1
e_1_3_2_10_1
e_1_3_2_32_1
e_1_3_2_6_1
e_1_3_2_12_1
e_1_3_2_5_1
Hall P (e_1_3_2_13_1) 1980
e_1_3_2_4_1
e_1_3_2_14_1
Paolella M. (e_1_3_2_23_1) 2019
e_1_3_2_3_1
Sheng H. (e_1_3_2_27_1) 2011
References_xml – ident: e_1_3_2_10_1
  doi: 10.1046/j.0143-9782.2003.00344.x
– ident: e_1_3_2_16_1
  doi: 10.1002/0471266981
– ident: e_1_3_2_32_1
  doi: 10.1017/CBO9780511802256
– volume: 46
  start-page: 3479
  year: 2017
  ident: e_1_3_2_33_1
  article-title: Adaptive LASSO for linear regression models with ARMA-GARCH errors
  publication-title: Communications in Statistics - Simulation and Computation
– ident: e_1_3_2_18_1
  doi: 10.2307/2533393
– ident: e_1_3_2_25_1
  doi: 10.1081/SAC-100107781
– ident: e_1_3_2_9_1
  doi: 10.1006/jmva.1998.1765
– ident: e_1_3_2_26_1
  doi: 10.1007/s11749-008-0112-z
– ident: e_1_3_2_8_1
  doi: 10.1016/j.spl.2014.05.020
– ident: e_1_3_2_14_1
  doi: 10.1093/biomet/68.1.165
– ident: e_1_3_2_24_1
  doi: 10.1016/j.jspi.2018.10.001
– ident: e_1_3_2_19_1
  doi: 10.1007/978-1-4899-3242-6
– ident: e_1_3_2_31_1
  doi: 10.3150/08-BEJ143
– ident: e_1_3_2_3_1
  doi: 10.1287/mnsc.1060.0520
– volume: 533
  start-page: 1
  year: 2010
  ident: e_1_3_2_11_1
  article-title: Regularization paths for generalized linear models via coordinate descent
  publication-title: Journal of Statistical Software
– ident: e_1_3_2_5_1
  doi: 10.1016/S0167-9473(02)00212-8
– volume-title: Linear models and time series analysis: Regression, ANOVA, ARMA and GARCH
  year: 2019
  ident: e_1_3_2_23_1
– ident: e_1_3_2_20_1
  doi: 10.1007/s00184-012-0425-5
– ident: e_1_3_2_21_1
– ident: e_1_3_2_2_1
  doi: 10.1080/10485250601046752
– ident: e_1_3_2_28_1
  doi: 10.1080/00949655.2014.971326
– volume-title: The statistical implication of pre-test and stein-rule estimators in econometrics
  year: 1978
  ident: e_1_3_2_15_1
– ident: e_1_3_2_4_1
  doi: 10.1007/s00180-013-0408-7
– start-page: 95
  volume-title: Fractional processes and fractional-order signal processing: Techniques and applications
  year: 2011
  ident: e_1_3_2_27_1
– volume-title: Martingale limit theory arid its applications
  year: 1980
  ident: e_1_3_2_13_1
– ident: e_1_3_2_22_1
  doi: 10.1002/9780470131466
– ident: e_1_3_2_12_1
  doi: 10.1111/j.1467-9892.1980.tb00297.x
– ident: e_1_3_2_7_1
  doi: 10.1007/978-1-4757-3454-6
– ident: e_1_3_2_6_1
  doi: 10.1214/009053604000000067
– ident: e_1_3_2_30_1
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: e_1_3_2_17_1
  doi: 10.1016/S0169-2070(99)00048-5
– ident: e_1_3_2_29_1
  doi: 10.1111/anzs.12169
SSID ssj0015783
Score 2.3282948
Snippet This paper focuses on pretest and shrinkage estimation strategies for generalized autoregressive fractionally integrated moving average (GARFIMA) models when...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 8515
SubjectTerms ARFIMA
asymptotic distributional bias and risk
Estimators
Monte Carlo simulation
partial likelihood
shrinkage and pretest estimators
Statistical analysis
Title Efficient estimation method for generalized ARFIMA models
URI https://www.tandfonline.com/doi/abs/10.1080/03610926.2022.2064503
https://www.proquest.com/docview/2875211265
Volume 52
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELa6cGEPiMei5akcuKZK_EiaY0GtCoKCIF31ZjlOsuJSEA1C4tczfiRxVLQLXKLKbR1l5st47Jn5BqHTDFbNEvxaXwiZ-7SgAdhBkvskIVQ1hMRM6CzfaTSZ0cs5m_d6r251SZX15duHdSXf0SqMgV5VlewXNNtMCgPwGfQLV9AwXD-l45Hmf1DRfMWVYYoQbU9onT7413BKP7yBVzm8G19cD03nm6XrknZKRHR2rCoyMvzNfVu7r0MMZuLGB7-FMavw-_YAdQKLrnjoHqqeveRLkYnOoeofMLq55S9wTx4w0Vkc7T41XWkC4mQimYKs0A8SbJmua_uKffAZ5q4BZtgBGiaOOQV3kLlLMzMEMStm3-ZJEsUdj1XiCVY1dhFlAWnXuTq2P73h49nVFU9H8_QHWsdxrOP7JJg24ScwY6avtn2CuvRLkbJ_dJOOU9OhvF1Z4rXfkm6hTbvh8IYGPduoVyx20M_rhq13uYM27huF76KkAZXXgsozuvfgjp4DKs-AyjOg-oVm41F6PvFtfw1f4kFU-VR1jC2JjJIiL0WSlAFhuWQBlgLeUqK4_eKYScKyQZzlWHmHIosLKjEdRAn4gXtobfG4KH4jL5QwkToQKyRVe2oh4LesAPXRMMwDto_6tYD4k6FR4WHNTmslypVEuZXoPkpcMfJKg600OOPkP_89qmXO7du65Bg25ljVy7GDf399iDZasB-hter5pTgGx7PKTjRI3gGfC3ly
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8JAEN0YPIgHP1AjitqD12K7H4U9EgMBBQ4GEm6b7XZrjAkaKRd-vTPdloDGeODe3bS7szNvtjPvEXIfQ9RMAdf6WpvE55YH4AdZ4jPJOApCUqHzKt9x1J_yp5mYbfTCYFkl5tCpI4rIfTUebryMLkviHsDrhoGkWGFAsZkq4gIJP_cFYHe0chaM138SwCKdRHIEaTOMKbt4_ppmKz5tsZf-8tZ5COodE1O-vKs8eW8us7hpVj94HXf7uhNyVCBUr-NM6pTs2XmNHI7W9K6LGqkiRHUMz2dEdnMWCgheHjJ2uFZIzylTe_Bd3qtjtn5b2cTrvPQGo46X6-8szsm015089v1CkME3tB1lPkeJ0ZSZSNok1VKmAROJEQE1GraVIRlcqyUME3G7FScU4YSOW5YbytuRBOBwQSrzj7m9JF5oYCK8QbGGYxKmNTwrLKArHoZJIOqkWW6D-nS8Gyos6UyLBVK4QKpYoDqRm5ulsvzCI3XqJIr9M7ZR7qwqjvBCQSoJ0CakkbjaYeo7ctCfjIZqOBg_X5MqitXnxTC0QSrZ19LeAKTJ4tvcZr8Bef3kNg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsNAFB2kgtSFj6pYn7Nwm5rMK82yaEOrtohYcDdMJhMRoRaTbvr13skkxSriovvMkHnde25y5hyErhLImhngWk8pnXrMMB_iIE09GlFmDSEJVyXLdywGE3b3wms2YV7RKm0NnTmhiDJW28M9S7OaEXcNQTfwI2IJBsTepRKMW73PTQHwxLL6qD9e_kiADekckgVUzdCmvsTzVzcr6WlFvPRXsC4zULyLkvrdHfHkvTMvko5e_JB1XGtwe2inwqe45zbUPtow0xbaHi3FXfMWalqA6vSdD1DULzUoIHVhq9fhLkJi50uNYVj41elavy1MintP8XDUw6X7Tn6IJnH_-WbgVXYMniZdUXjMGoxmVIvIpJmKosynPNXcJ1rBolIrBReGXFOedMMkJRZMqCQ0TBPWFRHAhiPUmH5MzTHCgYaO7PcTo5ktwZSCZ7kBbMWCIPV5G3XqVZAzp7ohg1rMtJogaSdIVhPURtH3tZJF-bkjc94kkv7T9qxeWFkd4FxCIQnAJiCCn6zR9SXaeryN5cNwfH-KmtapvmTCkDPUKD7n5hzwTJFclDv2C6884to
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+estimation+method+for+generalized+ARFIMA+models&rft.jtitle=Communications+in+statistics.+Theory+and+methods&rft.au=Pandher%2C+S+S&rft.au=Hossain%2C+S&rft.au=Budsaba%2C+K&rft.au=Volodin%2C+A&rft.date=2023-12-02&rft.pub=Taylor+%26+Francis+Ltd&rft.issn=0361-0926&rft.eissn=1532-415X&rft.volume=52&rft.issue=23&rft.spage=8515&rft.epage=8537&rft_id=info:doi/10.1080%2F03610926.2022.2064503&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0926&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0926&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0926&client=summon