Efficient estimation method for generalized ARFIMA models

This paper focuses on pretest and shrinkage estimation strategies for generalized autoregressive fractionally integrated moving average (GARFIMA) models when some of the regression parameters are possible to restrict to a subspace. These estimation strategies are constructed on the assumption that s...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Theory and methods Vol. 52; no. 23; pp. 8515 - 8537
Main Authors Pandher, S. S., Hossain, S., Budsaba, K., Volodin, A.
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 02.12.2023
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0361-0926
1532-415X
DOI10.1080/03610926.2022.2064503

Cover

More Information
Summary:This paper focuses on pretest and shrinkage estimation strategies for generalized autoregressive fractionally integrated moving average (GARFIMA) models when some of the regression parameters are possible to restrict to a subspace. These estimation strategies are constructed on the assumption that some covariates are not statistically significant for the response. To define the pretest and shrinkage estimators, we fit two models: one includes all the covariates and the others are subject to linear constraint based on the auxiliary information of the insignificant covariates. The unrestricted and restricted estimators are then combined optimally to get the pretest and shrinkage estimators. We enlighten the statistical properties of the shrinkage and pretest estimators in terms of asymptotic bias and risk. We examine the comparative performance of pretest and shrinkage estimators with respect to unrestricted maximum partial likelihood estimator (UMPLE). We show that the shrinkage estimators have a lower relative mean squared error as compared to the UMPLE when the number of significant covariates exceeds two. Monte Carlo simulations are conducted to examine the relative performance of the proposed estimators to the UMPLE. An empirical application is used for the usefulness of our proposed estimation strategies.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0361-0926
1532-415X
DOI:10.1080/03610926.2022.2064503