Efficient estimation for accelerated failure time model with interval-censored data in the presence of a cured subgroup

As the alternative of Cox model, the accelerated failure time (AFT) model, which simply regresses the logarithm of the survival time over the covariates, is commonly used in the analysis of interval-censored data. In this paper, we propose a novel two-component mixture-cure model for the interval-ce...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Simulation and computation Vol. 53; no. 8; pp. 3965 - 3977
Main Authors Zhao, Bo, Wang, Shuying, Wang, Chunjie
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 02.08.2024
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0361-0918
1532-4141
DOI10.1080/03610918.2022.2118780

Cover

Loading…
Abstract As the alternative of Cox model, the accelerated failure time (AFT) model, which simply regresses the logarithm of the survival time over the covariates, is commonly used in the analysis of interval-censored data. In this paper, we propose a novel two-component mixture-cure model for the interval-censored failure time data in the presence of a cure fraction. Specifically, the first component is a logistic regression model that describes the cure rate, and the second component is a semiparametric accelerated failure time model that describes the failure time of interest for the uncured subjects. An efficient semiparametric procedure is developed to estimate parameters in the considered model. We propose a penalized sieve maximum likelihood estimation approach with Bernstein polynomials to estimate the regression parameters quickly and accurately and the proposed procedure does not rely on the assumption of the distribution of the measurement error. The asymptotic properties of the resulting estimators are established. Extensive simulation studies conducted indicate that the proposed procedure works well for practical situations. In addition, AIDS data analysis is provided for illustration of the proposed method.
AbstractList As the alternative of Cox model, the accelerated failure time (AFT) model, which simply regresses the logarithm of the survival time over the covariates, is commonly used in the analysis of interval-censored data. In this paper, we propose a novel two-component mixture-cure model for the interval-censored failure time data in the presence of a cure fraction. Specifically, the first component is a logistic regression model that describes the cure rate, and the second component is a semiparametric accelerated failure time model that describes the failure time of interest for the uncured subjects. An efficient semiparametric procedure is developed to estimate parameters in the considered model. We propose a penalized sieve maximum likelihood estimation approach with Bernstein polynomials to estimate the regression parameters quickly and accurately and the proposed procedure does not rely on the assumption of the distribution of the measurement error. The asymptotic properties of the resulting estimators are established. Extensive simulation studies conducted indicate that the proposed procedure works well for practical situations. In addition, AIDS data analysis is provided for illustration of the proposed method.
Author Zhao, Bo
Wang, Shuying
Wang, Chunjie
Author_xml – sequence: 1
  givenname: Bo
  surname: Zhao
  fullname: Zhao, Bo
  organization: School of Mathematics and Statistics, Changchun University of Technology
– sequence: 2
  givenname: Shuying
  surname: Wang
  fullname: Wang, Shuying
  organization: School of Mathematics and Statistics, Changchun University of Technology
– sequence: 3
  givenname: Chunjie
  surname: Wang
  fullname: Wang, Chunjie
  organization: School of Mathematics and Statistics, Changchun University of Technology
BookMark eNp9kMFqGzEQhkVwII6TRwgIel5X0mq18q0lpGkh0Et7FrPaUaKwlhxJW-O3rxa7154GZr5_hvluySrEgIQ8cLblTLPPrFWc7bjeCibEVnCue82uyJp3rWgkl3xF1gvTLNANuc35nTHWaqnX5PjknLceQ6GYi99D8TFQFxMFa3HCBAVH6sBPc0JaAaT7OOJEj768UR8Kpj8wNRZDjqmSIxSobVrekB4SZgwWaXQUqJ2XeZ6H1xTnwx25djBlvL_UDfn97enX4_fm5efzj8evL40VWpVGCtv3nRtUB453O6dAKsVHbkGNgxJCyTq3goNyCE6Og-j7UbSaSyZb2w7thnw67z2k-DHXF817nFOoJ03LdppJJbiqVHembIo5J3TmkKqLdDKcmcWx-efYLI7NxXHNfTnnfKjK9nCMaRpNgdMUk0sQrK9n_r_iL_MUhhI
Cites_doi 10.1093/biomet/92.3.573
10.1007/s10985-021-09521-9
10.1214/009053605000000444
10.1198/jasa.2009.tm08033
10.1198/jasa.2009.tm07494
10.1111/j.1467-9868.2007.00589.x
10.1093/biomet/91.2.331
10.1201/b12290
10.1007/978-1-4757-2545-2
10.1093/biomet/asv020
10.1214/aos/1032894452
10.1002/(SICI)1097-0258(19990530)18:10<1235::AID-SIM120>3.0.CO;2-R
10.1007/s10985-016-9382-z
10.1016/j.csda.2018.03.011
10.1016/j.csda.2019.106891
10.2307/2529885
10.1214/aos/1030741085
10.1002/sim.2721
10.1006/jmva.2000.1975
10.1007/978-1-4612-5254-2
10.1002/bimj.202000288
10.1111/biom.12527
10.1007/s10985-021-09515-7
10.1111/j.1467-9469.2005.00415.x
10.1111/1467-9469.00177
10.1214/aos/1176325486
10.1002/sim.2697
10.1002/sim.7361
10.1080/01621459.1997.10474050
10.1002/cjs.11344
10.1002/9781118032985
10.1002/sim.1326
10.1198/016214506000000311
10.1002/sim.2001
ContentType Journal Article
Copyright 2022 Taylor & Francis Group, LLC 2022
2022 Taylor & Francis Group, LLC
Copyright_xml – notice: 2022 Taylor & Francis Group, LLC 2022
– notice: 2022 Taylor & Francis Group, LLC
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1080/03610918.2022.2118780
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Mathematics
Computer Science
EISSN 1532-4141
EndPage 3977
ExternalDocumentID 10_1080_03610918_2022_2118780
2118780
Genre Research Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11901054; 11671054
– fundername: Jilin Postdoctoral Foundation and Science
– fundername: Major science and technology projects of Jilin Provincial Department of science and technology
  grantid: 20210301038GX
– fundername: China Postdoctoral Science Foundation
  grantid: 2021M700536
– fundername: Tian Yuan Mathematical Foundation of National Natural Science Foundation of China
  grantid: 11926340
– fundername: Open fund of Key Laboratory of symbolic computing and knowledge engineering of Ministry of education
  grantid: 93K172021K10
GroupedDBID -~X
.7F
.DC
.QJ
0BK
0R~
29F
2DF
30N
4.4
5GY
5VS
8VB
AAENE
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEHJ
ABFIM
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADXPE
AEISY
AEOZL
AEPSL
AEYOC
AFKVX
AGDLA
AGMYJ
AIJEM
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
EBS
E~A
E~B
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
QWB
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
TWF
UPT
UT5
UU3
WH7
ZGOLN
ZL0
~S~
AAGDL
AAHIA
AAYXX
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
7SC
7TB
8FD
AMVHM
FR3
JQ2
K1G
KR7
L7M
L~C
L~D
TASJS
ID FETCH-LOGICAL-c286t-42c775fb65af159f6a4661d1ca6db62264c77c21a6feaf4db277d23814043c3b3
ISSN 0361-0918
IngestDate Wed Aug 13 03:43:00 EDT 2025
Tue Jul 01 02:09:44 EDT 2025
Wed Dec 25 09:06:50 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c286t-42c775fb65af159f6a4661d1ca6db62264c77c21a6feaf4db277d23814043c3b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3098046216
PQPubID 186203
PageCount 13
ParticipantIDs crossref_primary_10_1080_03610918_2022_2118780
proquest_journals_3098046216
informaworld_taylorfrancis_310_1080_03610918_2022_2118780
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-02
PublicationDateYYYYMMDD 2024-08-02
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-02
  day: 02
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle Communications in statistics. Simulation and computation
PublicationYear 2024
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References Sun J. (e_1_3_3_30_1) 2006
e_1_3_3_18_1
e_1_3_3_17_1
e_1_3_3_39_1
e_1_3_3_14_1
e_1_3_3_37_1
e_1_3_3_13_1
e_1_3_3_38_1
e_1_3_3_16_1
e_1_3_3_35_1
e_1_3_3_15_1
e_1_3_3_36_1
e_1_3_3_10_1
e_1_3_3_33_1
e_1_3_3_34_1
e_1_3_3_12_1
e_1_3_3_31_1
e_1_3_3_11_1
e_1_3_3_32_1
Ma S. (e_1_3_3_23_1) 2009
e_1_3_3_7_1
e_1_3_3_9_1
e_1_3_3_8_1
e_1_3_3_29_1
e_1_3_3_28_1
e_1_3_3_25_1
e_1_3_3_24_1
e_1_3_3_27_1
e_1_3_3_26_1
e_1_3_3_3_1
e_1_3_3_21_1
e_1_3_3_2_1
e_1_3_3_20_1
e_1_3_3_5_1
Cox D. R (e_1_3_3_6_1) 1984
e_1_3_3_4_1
Lorentz G. G. (e_1_3_3_19_1) 1986
e_1_3_3_22_1
References_xml – volume-title: Bernstein polynomials
  year: 1986
  ident: e_1_3_3_19_1
– ident: e_1_3_3_15_1
  doi: 10.1093/biomet/92.3.573
– ident: e_1_3_3_32_1
  doi: 10.1007/s10985-021-09521-9
– ident: e_1_3_3_22_1
  doi: 10.1214/009053605000000444
– ident: e_1_3_3_24_1
  doi: 10.1198/jasa.2009.tm08033
– ident: e_1_3_3_17_1
  doi: 10.1198/jasa.2009.tm07494
– volume-title: The statistical analysis of interval-censored failure time data
  year: 2006
  ident: e_1_3_3_30_1
– ident: e_1_3_3_16_1
  doi: 10.1111/j.1467-9868.2007.00589.x
– ident: e_1_3_3_20_1
  doi: 10.1093/biomet/91.2.331
– ident: e_1_3_3_3_1
  doi: 10.1201/b12290
– ident: e_1_3_3_31_1
  doi: 10.1007/978-1-4757-2545-2
– ident: e_1_3_3_21_1
  doi: 10.1093/biomet/asv020
– ident: e_1_3_3_13_1
  doi: 10.1214/aos/1032894452
– ident: e_1_3_3_9_1
  doi: 10.1002/(SICI)1097-0258(19990530)18:10<1235::AID-SIM120>3.0.CO;2-R
– ident: e_1_3_3_18_1
  doi: 10.1007/s10985-016-9382-z
– ident: e_1_3_3_35_1
  doi: 10.1016/j.csda.2018.03.011
– year: 2009
  ident: e_1_3_3_23_1
  article-title: Cure model with current status data
  publication-title: Statistica Sinica
– ident: e_1_3_3_36_1
  doi: 10.1016/j.csda.2019.106891
– ident: e_1_3_3_8_1
  doi: 10.2307/2529885
– ident: e_1_3_3_29_1
  doi: 10.1214/aos/1030741085
– ident: e_1_3_3_38_1
  doi: 10.1002/sim.2721
– ident: e_1_3_3_4_1
  doi: 10.1006/jmva.2000.1975
– ident: e_1_3_3_25_1
  doi: 10.1007/978-1-4612-5254-2
– volume-title: Analysis of survival data
  year: 1984
  ident: e_1_3_3_6_1
– ident: e_1_3_3_39_1
  doi: 10.1002/bimj.202000288
– ident: e_1_3_3_33_1
  doi: 10.1111/biom.12527
– ident: e_1_3_3_34_1
  doi: 10.1007/s10985-021-09515-7
– ident: e_1_3_3_7_1
  doi: 10.1111/j.1467-9469.2005.00415.x
– ident: e_1_3_3_26_1
  doi: 10.1111/1467-9469.00177
– ident: e_1_3_3_28_1
  doi: 10.1214/aos/1176325486
– ident: e_1_3_3_27_1
  doi: 10.1002/sim.2697
– ident: e_1_3_3_2_1
  doi: 10.1002/sim.7361
– ident: e_1_3_3_12_1
  doi: 10.1080/01621459.1997.10474050
– ident: e_1_3_3_11_1
  doi: 10.1002/cjs.11344
– ident: e_1_3_3_14_1
  doi: 10.1002/9781118032985
– ident: e_1_3_3_10_1
  doi: 10.1002/sim.1326
– ident: e_1_3_3_5_1
  doi: 10.1198/016214506000000311
– ident: e_1_3_3_37_1
  doi: 10.1002/sim.2001
SSID ssj0003848
Score 2.3444717
Snippet As the alternative of Cox model, the accelerated failure time (AFT) model, which simply regresses the logarithm of the survival time over the covariates, is...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Index Database
Publisher
StartPage 3965
SubjectTerms Accelerated failure time model
Asymptotic methods
Asymptotic properties
Bernstein polynomials
Censored data (mathematics)
Cure model
Data analysis
Error analysis
Failure times
Interval-censored data
Maximum likelihood estimates
Maximum likelihood estimation
Parameter estimation
Penalized sieve maximum likelihood estimation
Polynomials
Regression models
Subgroups
Time measurement
Title Efficient estimation for accelerated failure time model with interval-censored data in the presence of a cured subgroup
URI https://www.tandfonline.com/doi/abs/10.1080/03610918.2022.2118780
https://www.proquest.com/docview/3098046216
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcikHHguohYJ84FZ5tbEdJzlCVVQhtZe2UsUlchyHXUR3VzQRgt_FD2TGj2yWroByiVaO4jzm25nxeOYbQt6kYFesKiwzkhsmszxlOuMpS7NpXtRS6MTgju7pmTq5lB-u0qvR6Ocga6lrq4n5sbWu5H-kCmMgV6ySvYNk-0lhAH6DfOEIEobjP8n42PE_4G4-cmVcr_MGtTFgTpAFoj5s9BxTz10Xed_4xgdf5y7bUX9hBlayS0xDx2zRmPe4cmVJxob6yQ7P33TVpz5UFdkNhgUmLrcWS5Q8-_Pk8Hx-HdqDxfq5Vbe59_9xpl2w9t1yHdoPEexZ9z3a1cHw0axbfJ7bYbSCS5crNwxgCpUw8FG8zrVR6XImE0-AFbWypxAO6MsHKlYUvrlEMNfowG41BSF3UiCffIJJfJxPODZX952jNqm3fzOJfaJiEhlUwzQlTlOGae6R-xwWJ9g3Q0zPevsvctezrX_TWDeGjO7bnmbDI9rgy73lHzin5-IxeRhWK_Sth94TMrKLMXkUO4HQYBjG5MFpz_57Mya75z0EnpJvPUjpGqQU7k4HIKUBpBRBSh1IKYKU3gIpRZDCMIX70QhSumyopg6kNIL0Gbl8f3xxdMJCtw9meK5aBroiy9KmUqluwMdulJbgO9aJ0aquFNZ7w3nDE60aqxtZV_Dta3Q4kR_KiEo8JzuL5cLuEZrBogKsp8iKGhYImaysNAY8tbyuQQMJsU8m8YuXK0_qUv5R0vukGMqlbF00rfGtb0rxl2sPohDLoDvgkmmRY1l4ol7c9Vlekt31H-uA7LRfO_sKHOO2eu1w-AssbLJ_
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCaK7tDu0Ee6YX1s1aFXpbEkS_axGFqka5NTAvRmyJIFFBuSoHUwoL--pGwHyYZhh1wtU7YkmqRk8vsArlL0K5XOK-6UcFyZLOXWiJSnZpDlXkmbOPqjOxrr4VT9eEqf1mphKK2S9tChAYqItpo-bjqM7lLirtHqEp4lZWYJ0RfEmJ3htv1DmmtDLAZyMF5ZY5lFBi0S4STTVfH8q5sN_7SBXvqXtY4u6O4QXPfyTebJz_6yLvvu7Q9cx-1GdwQHbYTKbhqVOoadataDw479gbXGoAcfRyvE19ce7FPU2oA-n8Dv2whMgf6MEYhHUx3JcIzMOod-juApPAv2mXLiGdHbs8jIw-hUmD3HNEz7izvcYs9f8E5KY8XLDJ_HFrFeylVsHphlbkntr8syVqd8gund7eT7kLcMD9yJTNcc9cOYNJQ6tQHjqqCtwnjBJ85qX2qq8cV2JxKrQ2WD8qUwxlOQQZhATpbyM-zO5rPqCzCDgSRaTGlyj0GhUWWlnEPvnHmPWiflKfS7dS0WDZBHkXT4qO2MFzTjRTvjp5Cvr35RxxOU0NCdFPI_shedqhStTUCRQZ5RKXCiz7bo-hL2hpPRY_F4P344h31sUjEfUVzAbv2yrL5ijFSX3-JH8A6iAQMI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED4hkCb2MLbCBIMNP_DqrnEcO3mcoBUbtOIBJN4i_4glBGormmoSfz13ToIoaNpDX-OcE9uXu7Pz3XcAJxn6lUoVFXdSOC51nnGjRcYzPcgLL1OTOPqjO56o8xv55zbr0ISLFlZJe-jQEEVEW00f99yHDhH3E40u0VkSMEuIvqCC2Tnu2rcUkYdTFsdg8mKM0zwW0CIRTjJdEs-_ullxTyvkpe-MdfRAox2w3bs3wJP7_rK2fff0htZxrcF9hk9tfMp-NQr1BTaqaQ92utoPrDUFPfg4fuF7XfRgm2LWhvJ5F_4OIy0FejNGFB5NbiTDITLjHHo5IqfwLJg7QsQzKm7PYj0eRmfC7C6CMM0Dd7jBnj3inQRixcsMn8fmMVvKVWwWmGFuSe2LpY25KXtwMxpen57ztr4DdyJXNUft0DoLVmUmYFQVlJEYLfjEGeWtogxfbHciMSpUJkhvhdaeQgxiBHKpTb_C5nQ2rfaBaQwj0V6muvAYEmppK-kc-ubce9S5ND2Afres5byh8SiTjh21nfGSZrxsZ_wAiteLX9bx_CQ0xU7K9D-yR52mlK1FQJFBkVMicKK-rdH1MXy4OhuVl78nF4ewjS0yghHFEWzWj8vqOwZItf0RP4FnZ7ABrA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+estimation+for+accelerated+failure+time+model+with+interval-censored+data+in+the+presence+of+a+cured+subgroup&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Zhao%2C+Bo&rft.au=Wang%2C+Shuying&rft.au=Wang%2C+Chunjie&rft.date=2024-08-02&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=53&rft.issue=8&rft.spage=3965&rft.epage=3977&rft_id=info:doi/10.1080%2F03610918.2022.2118780&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03610918_2022_2118780
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon