Efficient estimation for accelerated failure time model with interval-censored data in the presence of a cured subgroup
As the alternative of Cox model, the accelerated failure time (AFT) model, which simply regresses the logarithm of the survival time over the covariates, is commonly used in the analysis of interval-censored data. In this paper, we propose a novel two-component mixture-cure model for the interval-ce...
Saved in:
Published in | Communications in statistics. Simulation and computation Vol. 53; no. 8; pp. 3965 - 3977 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Taylor & Francis
02.08.2024
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0361-0918 1532-4141 |
DOI | 10.1080/03610918.2022.2118780 |
Cover
Loading…
Abstract | As the alternative of Cox model, the accelerated failure time (AFT) model, which simply regresses the logarithm of the survival time over the covariates, is commonly used in the analysis of interval-censored data. In this paper, we propose a novel two-component mixture-cure model for the interval-censored failure time data in the presence of a cure fraction. Specifically, the first component is a logistic regression model that describes the cure rate, and the second component is a semiparametric accelerated failure time model that describes the failure time of interest for the uncured subjects. An efficient semiparametric procedure is developed to estimate parameters in the considered model. We propose a penalized sieve maximum likelihood estimation approach with Bernstein polynomials to estimate the regression parameters quickly and accurately and the proposed procedure does not rely on the assumption of the distribution of the measurement error. The asymptotic properties of the resulting estimators are established. Extensive simulation studies conducted indicate that the proposed procedure works well for practical situations. In addition, AIDS data analysis is provided for illustration of the proposed method. |
---|---|
AbstractList | As the alternative of Cox model, the accelerated failure time (AFT) model, which simply regresses the logarithm of the survival time over the covariates, is commonly used in the analysis of interval-censored data. In this paper, we propose a novel two-component mixture-cure model for the interval-censored failure time data in the presence of a cure fraction. Specifically, the first component is a logistic regression model that describes the cure rate, and the second component is a semiparametric accelerated failure time model that describes the failure time of interest for the uncured subjects. An efficient semiparametric procedure is developed to estimate parameters in the considered model. We propose a penalized sieve maximum likelihood estimation approach with Bernstein polynomials to estimate the regression parameters quickly and accurately and the proposed procedure does not rely on the assumption of the distribution of the measurement error. The asymptotic properties of the resulting estimators are established. Extensive simulation studies conducted indicate that the proposed procedure works well for practical situations. In addition, AIDS data analysis is provided for illustration of the proposed method. |
Author | Zhao, Bo Wang, Shuying Wang, Chunjie |
Author_xml | – sequence: 1 givenname: Bo surname: Zhao fullname: Zhao, Bo organization: School of Mathematics and Statistics, Changchun University of Technology – sequence: 2 givenname: Shuying surname: Wang fullname: Wang, Shuying organization: School of Mathematics and Statistics, Changchun University of Technology – sequence: 3 givenname: Chunjie surname: Wang fullname: Wang, Chunjie organization: School of Mathematics and Statistics, Changchun University of Technology |
BookMark | eNp9kMFqGzEQhkVwII6TRwgIel5X0mq18q0lpGkh0Et7FrPaUaKwlhxJW-O3rxa7154GZr5_hvluySrEgIQ8cLblTLPPrFWc7bjeCibEVnCue82uyJp3rWgkl3xF1gvTLNANuc35nTHWaqnX5PjknLceQ6GYi99D8TFQFxMFa3HCBAVH6sBPc0JaAaT7OOJEj768UR8Kpj8wNRZDjqmSIxSobVrekB4SZgwWaXQUqJ2XeZ6H1xTnwx25djBlvL_UDfn97enX4_fm5efzj8evL40VWpVGCtv3nRtUB453O6dAKsVHbkGNgxJCyTq3goNyCE6Og-j7UbSaSyZb2w7thnw67z2k-DHXF817nFOoJ03LdppJJbiqVHembIo5J3TmkKqLdDKcmcWx-efYLI7NxXHNfTnnfKjK9nCMaRpNgdMUk0sQrK9n_r_iL_MUhhI |
Cites_doi | 10.1093/biomet/92.3.573 10.1007/s10985-021-09521-9 10.1214/009053605000000444 10.1198/jasa.2009.tm08033 10.1198/jasa.2009.tm07494 10.1111/j.1467-9868.2007.00589.x 10.1093/biomet/91.2.331 10.1201/b12290 10.1007/978-1-4757-2545-2 10.1093/biomet/asv020 10.1214/aos/1032894452 10.1002/(SICI)1097-0258(19990530)18:10<1235::AID-SIM120>3.0.CO;2-R 10.1007/s10985-016-9382-z 10.1016/j.csda.2018.03.011 10.1016/j.csda.2019.106891 10.2307/2529885 10.1214/aos/1030741085 10.1002/sim.2721 10.1006/jmva.2000.1975 10.1007/978-1-4612-5254-2 10.1002/bimj.202000288 10.1111/biom.12527 10.1007/s10985-021-09515-7 10.1111/j.1467-9469.2005.00415.x 10.1111/1467-9469.00177 10.1214/aos/1176325486 10.1002/sim.2697 10.1002/sim.7361 10.1080/01621459.1997.10474050 10.1002/cjs.11344 10.1002/9781118032985 10.1002/sim.1326 10.1198/016214506000000311 10.1002/sim.2001 |
ContentType | Journal Article |
Copyright | 2022 Taylor & Francis Group, LLC 2022 2022 Taylor & Francis Group, LLC |
Copyright_xml | – notice: 2022 Taylor & Francis Group, LLC 2022 – notice: 2022 Taylor & Francis Group, LLC |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1080/03610918.2022.2118780 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Mathematics Computer Science |
EISSN | 1532-4141 |
EndPage | 3977 |
ExternalDocumentID | 10_1080_03610918_2022_2118780 2118780 |
Genre | Research Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11901054; 11671054 – fundername: Jilin Postdoctoral Foundation and Science – fundername: Major science and technology projects of Jilin Provincial Department of science and technology grantid: 20210301038GX – fundername: China Postdoctoral Science Foundation grantid: 2021M700536 – fundername: Tian Yuan Mathematical Foundation of National Natural Science Foundation of China grantid: 11926340 – fundername: Open fund of Key Laboratory of symbolic computing and knowledge engineering of Ministry of education grantid: 93K172021K10 |
GroupedDBID | -~X .7F .DC .QJ 0BK 0R~ 29F 2DF 30N 4.4 5GY 5VS 8VB AAENE AAJMT AALDU AAMIU AAPUL AAQRR ABCCY ABEHJ ABFIM ABJNI ABLIJ ABPAQ ABPEM ABTAI ABXUL ABXYU ACGEJ ACGFS ACIWK ACTIO ADCVX ADXPE AEISY AEOZL AEPSL AEYOC AFKVX AGDLA AGMYJ AIJEM AJWEG AKBVH AKOOK ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BLEHA CCCUG CE4 CS3 DGEBU DKSSO EBS E~A E~B GTTXZ H13 HF~ HZ~ H~P IPNFZ J.P KYCEM LJTGL M4Z NA5 NY~ O9- P2P QWB RIG RNANH ROSJB RTWRZ S-T SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ TWF UPT UT5 UU3 WH7 ZGOLN ZL0 ~S~ AAGDL AAHIA AAYXX ADYSH AFRVT AIYEW AMPGV CITATION 7SC 7TB 8FD AMVHM FR3 JQ2 K1G KR7 L7M L~C L~D TASJS |
ID | FETCH-LOGICAL-c286t-42c775fb65af159f6a4661d1ca6db62264c77c21a6feaf4db277d23814043c3b3 |
ISSN | 0361-0918 |
IngestDate | Wed Aug 13 03:43:00 EDT 2025 Tue Jul 01 02:09:44 EDT 2025 Wed Dec 25 09:06:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c286t-42c775fb65af159f6a4661d1ca6db62264c77c21a6feaf4db277d23814043c3b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 3098046216 |
PQPubID | 186203 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1080_03610918_2022_2118780 proquest_journals_3098046216 informaworld_taylorfrancis_310_1080_03610918_2022_2118780 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-08-02 |
PublicationDateYYYYMMDD | 2024-08-02 |
PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | Communications in statistics. Simulation and computation |
PublicationYear | 2024 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | Sun J. (e_1_3_3_30_1) 2006 e_1_3_3_18_1 e_1_3_3_17_1 e_1_3_3_39_1 e_1_3_3_14_1 e_1_3_3_37_1 e_1_3_3_13_1 e_1_3_3_38_1 e_1_3_3_16_1 e_1_3_3_35_1 e_1_3_3_15_1 e_1_3_3_36_1 e_1_3_3_10_1 e_1_3_3_33_1 e_1_3_3_34_1 e_1_3_3_12_1 e_1_3_3_31_1 e_1_3_3_11_1 e_1_3_3_32_1 Ma S. (e_1_3_3_23_1) 2009 e_1_3_3_7_1 e_1_3_3_9_1 e_1_3_3_8_1 e_1_3_3_29_1 e_1_3_3_28_1 e_1_3_3_25_1 e_1_3_3_24_1 e_1_3_3_27_1 e_1_3_3_26_1 e_1_3_3_3_1 e_1_3_3_21_1 e_1_3_3_2_1 e_1_3_3_20_1 e_1_3_3_5_1 Cox D. R (e_1_3_3_6_1) 1984 e_1_3_3_4_1 Lorentz G. G. (e_1_3_3_19_1) 1986 e_1_3_3_22_1 |
References_xml | – volume-title: Bernstein polynomials year: 1986 ident: e_1_3_3_19_1 – ident: e_1_3_3_15_1 doi: 10.1093/biomet/92.3.573 – ident: e_1_3_3_32_1 doi: 10.1007/s10985-021-09521-9 – ident: e_1_3_3_22_1 doi: 10.1214/009053605000000444 – ident: e_1_3_3_24_1 doi: 10.1198/jasa.2009.tm08033 – ident: e_1_3_3_17_1 doi: 10.1198/jasa.2009.tm07494 – volume-title: The statistical analysis of interval-censored failure time data year: 2006 ident: e_1_3_3_30_1 – ident: e_1_3_3_16_1 doi: 10.1111/j.1467-9868.2007.00589.x – ident: e_1_3_3_20_1 doi: 10.1093/biomet/91.2.331 – ident: e_1_3_3_3_1 doi: 10.1201/b12290 – ident: e_1_3_3_31_1 doi: 10.1007/978-1-4757-2545-2 – ident: e_1_3_3_21_1 doi: 10.1093/biomet/asv020 – ident: e_1_3_3_13_1 doi: 10.1214/aos/1032894452 – ident: e_1_3_3_9_1 doi: 10.1002/(SICI)1097-0258(19990530)18:10<1235::AID-SIM120>3.0.CO;2-R – ident: e_1_3_3_18_1 doi: 10.1007/s10985-016-9382-z – ident: e_1_3_3_35_1 doi: 10.1016/j.csda.2018.03.011 – year: 2009 ident: e_1_3_3_23_1 article-title: Cure model with current status data publication-title: Statistica Sinica – ident: e_1_3_3_36_1 doi: 10.1016/j.csda.2019.106891 – ident: e_1_3_3_8_1 doi: 10.2307/2529885 – ident: e_1_3_3_29_1 doi: 10.1214/aos/1030741085 – ident: e_1_3_3_38_1 doi: 10.1002/sim.2721 – ident: e_1_3_3_4_1 doi: 10.1006/jmva.2000.1975 – ident: e_1_3_3_25_1 doi: 10.1007/978-1-4612-5254-2 – volume-title: Analysis of survival data year: 1984 ident: e_1_3_3_6_1 – ident: e_1_3_3_39_1 doi: 10.1002/bimj.202000288 – ident: e_1_3_3_33_1 doi: 10.1111/biom.12527 – ident: e_1_3_3_34_1 doi: 10.1007/s10985-021-09515-7 – ident: e_1_3_3_7_1 doi: 10.1111/j.1467-9469.2005.00415.x – ident: e_1_3_3_26_1 doi: 10.1111/1467-9469.00177 – ident: e_1_3_3_28_1 doi: 10.1214/aos/1176325486 – ident: e_1_3_3_27_1 doi: 10.1002/sim.2697 – ident: e_1_3_3_2_1 doi: 10.1002/sim.7361 – ident: e_1_3_3_12_1 doi: 10.1080/01621459.1997.10474050 – ident: e_1_3_3_11_1 doi: 10.1002/cjs.11344 – ident: e_1_3_3_14_1 doi: 10.1002/9781118032985 – ident: e_1_3_3_10_1 doi: 10.1002/sim.1326 – ident: e_1_3_3_5_1 doi: 10.1198/016214506000000311 – ident: e_1_3_3_37_1 doi: 10.1002/sim.2001 |
SSID | ssj0003848 |
Score | 2.3444717 |
Snippet | As the alternative of Cox model, the accelerated failure time (AFT) model, which simply regresses the logarithm of the survival time over the covariates, is... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 3965 |
SubjectTerms | Accelerated failure time model Asymptotic methods Asymptotic properties Bernstein polynomials Censored data (mathematics) Cure model Data analysis Error analysis Failure times Interval-censored data Maximum likelihood estimates Maximum likelihood estimation Parameter estimation Penalized sieve maximum likelihood estimation Polynomials Regression models Subgroups Time measurement |
Title | Efficient estimation for accelerated failure time model with interval-censored data in the presence of a cured subgroup |
URI | https://www.tandfonline.com/doi/abs/10.1080/03610918.2022.2118780 https://www.proquest.com/docview/3098046216 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWcikHHguohYJ84FZ5tbEdJzlCVVQhtZe2UsUlchyHXUR3VzQRgt_FD2TGj2yWroByiVaO4jzm25nxeOYbQt6kYFesKiwzkhsmszxlOuMpS7NpXtRS6MTgju7pmTq5lB-u0qvR6Ocga6lrq4n5sbWu5H-kCmMgV6ySvYNk-0lhAH6DfOEIEobjP8n42PE_4G4-cmVcr_MGtTFgTpAFoj5s9BxTz10Xed_4xgdf5y7bUX9hBlayS0xDx2zRmPe4cmVJxob6yQ7P33TVpz5UFdkNhgUmLrcWS5Q8-_Pk8Hx-HdqDxfq5Vbe59_9xpl2w9t1yHdoPEexZ9z3a1cHw0axbfJ7bYbSCS5crNwxgCpUw8FG8zrVR6XImE0-AFbWypxAO6MsHKlYUvrlEMNfowG41BSF3UiCffIJJfJxPODZX952jNqm3fzOJfaJiEhlUwzQlTlOGae6R-xwWJ9g3Q0zPevsvctezrX_TWDeGjO7bnmbDI9rgy73lHzin5-IxeRhWK_Sth94TMrKLMXkUO4HQYBjG5MFpz_57Mya75z0EnpJvPUjpGqQU7k4HIKUBpBRBSh1IKYKU3gIpRZDCMIX70QhSumyopg6kNIL0Gbl8f3xxdMJCtw9meK5aBroiy9KmUqluwMdulJbgO9aJ0aquFNZ7w3nDE60aqxtZV_Dta3Q4kR_KiEo8JzuL5cLuEZrBogKsp8iKGhYImaysNAY8tbyuQQMJsU8m8YuXK0_qUv5R0vukGMqlbF00rfGtb0rxl2sPohDLoDvgkmmRY1l4ol7c9Vlekt31H-uA7LRfO_sKHOO2eu1w-AssbLJ_ |
linkProvider | Taylor & Francis |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9swDCaK7tDu0Ee6YX1s1aFXpbEkS_axGFqka5NTAvRmyJIFFBuSoHUwoL--pGwHyYZhh1wtU7YkmqRk8vsArlL0K5XOK-6UcFyZLOXWiJSnZpDlXkmbOPqjOxrr4VT9eEqf1mphKK2S9tChAYqItpo-bjqM7lLirtHqEp4lZWYJ0RfEmJ3htv1DmmtDLAZyMF5ZY5lFBi0S4STTVfH8q5sN_7SBXvqXtY4u6O4QXPfyTebJz_6yLvvu7Q9cx-1GdwQHbYTKbhqVOoadataDw479gbXGoAcfRyvE19ce7FPU2oA-n8Dv2whMgf6MEYhHUx3JcIzMOod-juApPAv2mXLiGdHbs8jIw-hUmD3HNEz7izvcYs9f8E5KY8XLDJ_HFrFeylVsHphlbkntr8syVqd8gund7eT7kLcMD9yJTNcc9cOYNJQ6tQHjqqCtwnjBJ85qX2qq8cV2JxKrQ2WD8qUwxlOQQZhATpbyM-zO5rPqCzCDgSRaTGlyj0GhUWWlnEPvnHmPWiflKfS7dS0WDZBHkXT4qO2MFzTjRTvjp5Cvr35RxxOU0NCdFPI_shedqhStTUCRQZ5RKXCiz7bo-hL2hpPRY_F4P344h31sUjEfUVzAbv2yrL5ijFSX3-JH8A6iAQMI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED4hkCb2MLbCBIMNP_DqrnEcO3mcoBUbtOIBJN4i_4glBGormmoSfz13ToIoaNpDX-OcE9uXu7Pz3XcAJxn6lUoVFXdSOC51nnGjRcYzPcgLL1OTOPqjO56o8xv55zbr0ISLFlZJe-jQEEVEW00f99yHDhH3E40u0VkSMEuIvqCC2Tnu2rcUkYdTFsdg8mKM0zwW0CIRTjJdEs-_ullxTyvkpe-MdfRAox2w3bs3wJP7_rK2fff0htZxrcF9hk9tfMp-NQr1BTaqaQ92utoPrDUFPfg4fuF7XfRgm2LWhvJ5F_4OIy0FejNGFB5NbiTDITLjHHo5IqfwLJg7QsQzKm7PYj0eRmfC7C6CMM0Dd7jBnj3inQRixcsMn8fmMVvKVWwWmGFuSe2LpY25KXtwMxpen57ztr4DdyJXNUft0DoLVmUmYFQVlJEYLfjEGeWtogxfbHciMSpUJkhvhdaeQgxiBHKpTb_C5nQ2rfaBaQwj0V6muvAYEmppK-kc-ubce9S5ND2Afres5byh8SiTjh21nfGSZrxsZ_wAiteLX9bx_CQ0xU7K9D-yR52mlK1FQJFBkVMicKK-rdH1MXy4OhuVl78nF4ewjS0yghHFEWzWj8vqOwZItf0RP4FnZ7ABrA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+estimation+for+accelerated+failure+time+model+with+interval-censored+data+in+the+presence+of+a+cured+subgroup&rft.jtitle=Communications+in+statistics.+Simulation+and+computation&rft.au=Zhao%2C+Bo&rft.au=Wang%2C+Shuying&rft.au=Wang%2C+Chunjie&rft.date=2024-08-02&rft.issn=0361-0918&rft.eissn=1532-4141&rft.volume=53&rft.issue=8&rft.spage=3965&rft.epage=3977&rft_id=info:doi/10.1080%2F03610918.2022.2118780&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_03610918_2022_2118780 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0361-0918&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0361-0918&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0361-0918&client=summon |