Efficient estimation for accelerated failure time model with interval-censored data in the presence of a cured subgroup

As the alternative of Cox model, the accelerated failure time (AFT) model, which simply regresses the logarithm of the survival time over the covariates, is commonly used in the analysis of interval-censored data. In this paper, we propose a novel two-component mixture-cure model for the interval-ce...

Full description

Saved in:
Bibliographic Details
Published inCommunications in statistics. Simulation and computation Vol. 53; no. 8; pp. 3965 - 3977
Main Authors Zhao, Bo, Wang, Shuying, Wang, Chunjie
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis 02.08.2024
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:As the alternative of Cox model, the accelerated failure time (AFT) model, which simply regresses the logarithm of the survival time over the covariates, is commonly used in the analysis of interval-censored data. In this paper, we propose a novel two-component mixture-cure model for the interval-censored failure time data in the presence of a cure fraction. Specifically, the first component is a logistic regression model that describes the cure rate, and the second component is a semiparametric accelerated failure time model that describes the failure time of interest for the uncured subjects. An efficient semiparametric procedure is developed to estimate parameters in the considered model. We propose a penalized sieve maximum likelihood estimation approach with Bernstein polynomials to estimate the regression parameters quickly and accurately and the proposed procedure does not rely on the assumption of the distribution of the measurement error. The asymptotic properties of the resulting estimators are established. Extensive simulation studies conducted indicate that the proposed procedure works well for practical situations. In addition, AIDS data analysis is provided for illustration of the proposed method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0361-0918
1532-4141
DOI:10.1080/03610918.2022.2118780