Porous polypyrrole with a vesicle-like structure for efficient removal of per- and polyfluoroalkyl substances from water: Crucial role of porosity and morphology

Herein, a vesicle-like and porous polypyrrole (pPPy) was fabricated by in suit self-template method to efficiently capture per- and polyfluoroalkyl substances (PFASs) and the important role of porosity and morphology in PFAS removal was explored. Compared to solid PPy (sPPy), the porosity and vesicl...

Full description

Saved in:
Bibliographic Details
Published inJournal of hazardous materials Vol. 462; p. 132748
Main Authors Yu, Hao, Zhang, Peng, Chen, Hao, Yao, Yiming, Zhao, Leicheng, Zhao, Maoshen, Zhu, Lingyan, Sun, Hongwen
Format Journal Article
LanguageEnglish
Published 15.01.2024
Online AccessGet full text

Cover

Loading…
More Information
Summary:Herein, a vesicle-like and porous polypyrrole (pPPy) was fabricated by in suit self-template method to efficiently capture per- and polyfluoroalkyl substances (PFASs) and the important role of porosity and morphology in PFAS removal was explored. Compared to solid PPy (sPPy), the porosity and vesicle-like morphology of pPPy endowed it with excellent properties such as large specific surface area (108.9 m2/g vs. 22.3 m2/g), suitable pore sizes (17.4 nm), dispersity, and high hydrophilicity, which facilitated mass transfer and enhanced PFAS sorption performance. The estimated sorption capacities of pPPy for perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS) were 509 mg/g and 532 mg/g, respectively, which were ∼2 times higher than sPPy. Furthermore, pPPy demonstrated PFAS removal of ≥ 90% across a wide pH range (3-9) and varying humic acid concentrations (0-50 mg/L). In actual water matrices, pPPy efficiently removed 12 short-chain (C-F number: 3-6) and long-chain PFASs (>90% removal for major PFASs), outperforming sPPy by ∼1.2-2.5 times. Notably, the enlarged porosity and regular morphology of pPPy significantly enhanced the removal of short-chain PFASs by ∼2 times. The spent pPPy could be regenerated and reused over 5 times. This research provides valuable insights for designing efficient PFAS sorbents by emphasizing control over porosity and morphology.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0304-3894
1873-3336
DOI:10.1016/j.jhazmat.2023.132748