Identification of the iron-sulfur clusters in a ferredoxin from the archaeon Sulfolobus acidocaldarius. Evidence for a reduced [3Fe-4S] cluster with pH-dependent electronic properties

A ferredoxin isolated from the archaeon Sulfolobus acidocaldarius strain DSM 639 has been shown to contain one [3Fe-4S]1 + 10 cluster with a reduction potential of -275 mV and one [4Fe-4S]2+/1+ cluster with a reduction potential of -529 mV at pH 6.4, in the temperature range 0-50 degrees C. The mono...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of biochemistry Vol. 233; no. 3; pp. 937 - 946
Main Authors Breton, J L, Duff, J L, Butt, J N, Armstrong, F A, George, S J, Pétillot, Y, Forest, E, Schäfer, G, Thomson, A J
Format Journal Article
LanguageEnglish
Published England 01.11.1995
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A ferredoxin isolated from the archaeon Sulfolobus acidocaldarius strain DSM 639 has been shown to contain one [3Fe-4S]1 + 10 cluster with a reduction potential of -275 mV and one [4Fe-4S]2+/1+ cluster with a reduction potential of -529 mV at pH 6.4, in the temperature range 0-50 degrees C. The monomer molecular mass was confirmed to be 10907.5 +/- 1.0 Da by electrospray mass spectrometry, as calculated from the published amino acid sequence [Minami, Y. Wakabayashi. S., Wada, K., Matsubara, H., Kerscher, L. & Oesterhelt, D. (1985) J. Biochem. (Tokyo) 97, 745-751], while the holoprotein molecular mass was found to be 11,550 +/- 1.0 Da. The reduced [3Fe-4S]0 cluster was also shown by direct electrochemistry and magnetic circular dichroic spectroscopy to undergo a one-proton uptake reaction as first observed for Azotobacter chroococcum ferredoxin I [George, S. J., Richards, A. J. M., Thomson, A. J. & Yates, M. G. (1984) Biochem. J. 224, 247-251]. The pKa of the protonation step has been determined by a novel thin film electrochemical method to be 5.8. This is significantly different from the pKa of 7.7 determined for A. vinelandii ferredoxin I [Shen, B., Martin, L. L., Butt, J. N., Armstrong, F. A., Stout, C. D., Jensen, J. M., Stephens, P. J., LaMar, G. N., Gorst, C. M. & Burgess, B. K. (1993) J. Biol. Chem. 268, 25928-25939] and indicates that the polypeptide chain around the [3Fe-4S] cluster controls this reaction. Although this appears to be only the second reported case of protonation at or near the reduced [3Fe-4S]0 cluster, its observation in S. acidocaldarius ferredoxin raises the question of the generality of this chemistry for 3Fe clusters. The similarity of the pKa to the estimated intracellular pH of S. acidocaldarius strongly suggests a physiological role for this process.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0014-2956
1432-1033
DOI:10.1111/j.1432-1033.1995.937_3.x