Reservoir computing-based digital signal equalizer for equivalent-time sampling
A sampling oscilloscope is an important instrument for evaluating the quality of optical communication signals. Since its working principle is equivalent-time sampling, the data obtained for digital signals with random characteristics do not have continuity, which makes it impossible to use methods...
Saved in:
Published in | Review of scientific instruments Vol. 94; no. 11 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.11.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A sampling oscilloscope is an important instrument for evaluating the quality of optical communication signals. Since its working principle is equivalent-time sampling, the data obtained for digital signals with random characteristics do not have continuity, which makes it impossible to use methods such as filtering and averaging to equalize the signal. For this reason, this paper proposes a signal equalization method based on reservoir computing. Through training of the reservoir model, an equivalent-time equalizer is established to solve the problem that the sampling oscilloscope cannot equalize random digital signals. Compared with the continuous-time equalizer, the coincidence degree exceeds 95%. The eye height and eye width are increased by 7 and 1.6, respectively, while the jitter in the eye diagram is reduced by 2.3 times, which solves the problem that the sampling oscilloscope cannot equalize random digital signals. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0034-6748 1089-7623 1089-7623 |
DOI: | 10.1063/5.0166523 |