Monochromatic photoluminescence obtained from embedded ZnO nanodots in an ultrahard diamond-like carbon matrix

At room temperature, we observe the self assembly of nanoclusters in an amorphous matrix using a vacuum deposition technique. Self-assembled ZnO nanoclusters embedded in hard diamond-like amorphous carbon thin films, deposited by high vacuum Filtered Cathodic Vacuum Arc (FCVA) technique at room temp...

Full description

Saved in:
Bibliographic Details
Published inDiamond and related materials Vol. 17; no. 2; pp. 167 - 170
Main Authors Hsieh, J., Chua, Daniel H.C., Tay, B.K., Teo, E.H.T., Tanemura, M.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.02.2008
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:At room temperature, we observe the self assembly of nanoclusters in an amorphous matrix using a vacuum deposition technique. Self-assembled ZnO nanoclusters embedded in hard diamond-like amorphous carbon thin films, deposited by high vacuum Filtered Cathodic Vacuum Arc (FCVA) technique at room temperature without post-processing, have been observed. A selective self assembly of metal and oxygen ions in a 3-element plasma was observed. XPS distinctly showed presence of ZnO and DLC-mixture in 5, 7 and 10 at.% Zn (in target) films while maintaining high sp 3 content. This in turn improved the Young's modulus value of the ZnO nanoclusters embedded in DLC film (~ 220 GPa) compared to bulk ZnO (~ 110 GPa). Films with ZnO detected were observed to exhibit absorption edge at 377 nm monochromatic UV light emissions. This corresponded to a band gap value of about 3.30 eV. The emission with greatest intensity (after normalization) was detected from 10 at.% Zn (in target) film where presence of ZnO nanoclusters (~ 40 nm) in DLC matrix were confirmed by TEM. This showed that well-defined crystalline ZnO nanoclusters contributed to strong PL signal. Strong monochromatic emissions detected hinted that no defect states were present.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0925-9635
1879-0062
DOI:10.1016/j.diamond.2007.11.015