Grid-Interfacing Converter Systems With Enhanced Voltage Quality for Microgrid Application-Concept and Implementation

Grid-interfacing converter systems with enhanced voltage quality are proposed for microgrid applications in this paper. By adapting the conventional series-parallel structure, a group of grid-interfacing system topologies are proposed for the purpose of interfacing local generation/microgrid to the...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on power electronics Vol. 26; no. 12; pp. 3501 - 3513
Main Authors Wang, Fei, Duarte, Jorge L., Hendrix, Marcel A. M.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.12.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Grid-interfacing converter systems with enhanced voltage quality are proposed for microgrid applications in this paper. By adapting the conventional series-parallel structure, a group of grid-interfacing system topologies are proposed for the purpose of interfacing local generation/microgrid to the grid, or interconnecting microgrids. The functionality of the proposed systems is also reconfigured in order to ease the control design and to improve overall system performance, differing from existing series-parallel structure-based systems. Experiments with a concrete laboratory system are given to detail the proposed concepts and to demonstrate the practical implementations. Two three-phase four-leg inverters, together with dc microsources and nonlinear loads, are employed to construct a general series-parallel grid-interfacing system. Through the introduction of multilevel control objectives, it is illustrated that the proposed system could ride through voltage disturbances and continue the power transfer between the local generation and the grid, while a high-quality voltage is maintained for the local loads. The system also shows the possibility to achieve auxiliary functions such as voltage unbalance correction and harmonic current compensation. The main design aspects of the controllers are specified, and the entire system is effectively validated on a laboratory setup.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2011.2147334