Multifractal dimensions for critical random matrix ensembles
Based on heuristic arguments we conjecture that an intimate relation exists between the eigenfunction multifractal dimensions Dq of the eigenstates of critical random matrix ensembles Dq′≈qDq[q′ +(q− q′ )Dq]−1, 1⩽q⩽2. We verify this relation by extensive numerical calculations. We also demonstrate t...
Saved in:
Published in | Europhysics letters Vol. 98; no. 3; p. 37006 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
EPS, SIF, EDP Sciences and IOP Publishing
01.05.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Based on heuristic arguments we conjecture that an intimate relation exists between the eigenfunction multifractal dimensions Dq of the eigenstates of critical random matrix ensembles Dq′≈qDq[q′ +(q− q′ )Dq]−1, 1⩽q⩽2. We verify this relation by extensive numerical calculations. We also demonstrate that the level compressibility χ describing level correlations can be related to Dq in a unified way as Dq=(1− χ)[1+(q−1)χ]−1, thus generalizing existing relations with relevance to the disorder-driven Anderson transition. |
---|---|
Bibliography: | publisher-ID:epl14535 istex:314A681DC402A4673B5349B3F699A9C0204F0FE3 ark:/67375/80W-LR7CHGDG-2 |
ISSN: | 0295-5075 1286-4854 |
DOI: | 10.1209/0295-5075/98/37006 |