CommTrust: Computing Multi-Dimensional Trust by Mining E-Commerce Feedback Comments
Reputation-based trust models are widely used in e-commerce applications, and feedback ratings are aggregated to compute sellers' reputation trust scores. The "all good reputation" problem, however, is prevalent in current reputation systems-reputation scores are universally high for...
Saved in:
Published in | IEEE transactions on knowledge and data engineering Vol. 26; no. 7; pp. 1631 - 1643 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.07.2014
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Reputation-based trust models are widely used in e-commerce applications, and feedback ratings are aggregated to compute sellers' reputation trust scores. The "all good reputation" problem, however, is prevalent in current reputation systems-reputation scores are universally high for sellers and it is difficult for potential buyers to select trustworthy sellers. In this paper, based on the observation that buyers often express opinions openly in free text feedback comments, we propose CommTrust for trust evaluation by mining feedback comments. Our main contributions include: 1) we propose a multidimensional trust model for computing reputation scores from user feedback comments; and 2) we propose an algorithm for mining feedback comments for dimension ratings and weights, combining techniques of natural language processing, opinion mining, and topic modeling. Extensive experiments on eBay and Amazon data demonstrate that CommTrust can effectively address the "all good reputation" issue and rank sellers effectively. To the best of our knowledge, our research is the first piece of work on trust evaluation by mining feedback comments. |
---|---|
ISSN: | 1041-4347 1558-2191 |
DOI: | 10.1109/TKDE.2013.177 |