A scalable field study using leaves as a novel passive air sampler to evaluate the potential source of organophosphate esters in street dust

Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers in industrial and commercial products. It is generally believed that OPEs in street dust mainly originate from road traffic and anthropogenic activities. The influence of atmospheric deposition is still unknown. In th...

Full description

Saved in:
Bibliographic Details
Published inChemosphere (Oxford) Vol. 312; p. 137248
Main Authors Pang, Long, Huang, Ziling, Yang, Huiqiang, Pang, Rong, Wu, Mingkai, Jin, Baodan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Organophosphate esters (OPEs) are widely used as flame retardants and plasticizers in industrial and commercial products. It is generally believed that OPEs in street dust mainly originate from road traffic and anthropogenic activities. The influence of atmospheric deposition is still unknown. In this study, leaves were employed as a novel passive air sampler to collect particle matters (PM) in 12 cities in the central province of Henan, China. Similar compositional profiles of OPEs were found in street dust and PM samples. The concentrations of individual OPEs in PM were 1–4 times higher than in street dust. Chlorinated OPEs concentration in PM shows a moderate correlation (r2 = 0.538, p < 0.01) with that in street dust. The concentration of alkyl OPEs in PM has a high correlation (r2 = 0.843, p < 0.01) with that in street dust. No significant correlation (r2 = 0.133, p = 0.132) was found on the aryl OPEs concentrations between street dust and PM. Spearman correlation reveals that the emission sources of tricresyl phosphate (TCrP) and triethyl phosphate (TEP) may be different from other OPEs in dust and PM samples. Principle component analysis (PCA) provides an appropriate explanation that tris (2-chloroethyl) phosphate (TCEP), triphenyl phosphate (TPhP), tris (chloropropyl) phosphate (TCPP), tributyl phosphate (TnBP), and TEP in street dust and PM may be emitted from the same sources, suggesting that PM has a significant influence on the occurrence of OPEs in street dust. The estimated dry deposition fluxes of particle-bound OPEs show a significant correlation (R2 = 0.969, p < 0.01) with OPEs concentrations in street dust, revealing that the input of atmospheric deposition could be a major source of OPEs in street dust. [Display omitted] •Spatial phytosampling was used to study the potential source of OPEs in street dust.•Leaves were used as passive sampler for comparative applications.•Most OPEs in PM had positive correlation with those in the street dust.•The input of atmospheric deposition is a major source of OPEs in street dust.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0045-6535
1879-1298
DOI:10.1016/j.chemosphere.2022.137248