Performance measurement of adaptive optics system based on Strehl ratio

In this article, a method for measuring the performance of adaptive optics (AO) systems is designed and validated by experiments. The Strehl ratio (SR) which is based on the target images is used to evaluate the performance quantitatively because it relates to the effect of AO correction directly. I...

Full description

Saved in:
Bibliographic Details
Published inJournal of China universities of posts and telecommunications Vol. 23; no. 3; pp. 94 - 100
Main Authors Liang, Wang, Tao, Chen, Xudong, Lin, Peifeng, Wei, Xinyue, Liu, Jianlu, Jia
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2016
Subjects
Online AccessGet full text
ISSN1005-8885
DOI10.1016/S1005-8885(16)60038-9

Cover

Abstract In this article, a method for measuring the performance of adaptive optics (AO) systems is designed and validated by experiments. The Strehl ratio (SR) which is based on the target images is used to evaluate the performance quantitatively because it relates to the effect of AO correction directly. In the calculation of the SR, to avoid energy scaling in the diffraction-limited point spread function, an algorithm based on the integral of the optical transfer function (OTF) is proposed. Then, a 97-element AO system is established to validate this method, and a white-light fiber source is used as a point-like target. To simulate the practical conditions which influence the performance of the AO system, targets of different brightness are simulated in terms of different signal-to-noise ratios (SNRs) of the Shack-Hartmann (SH), and atmospheric turbulence is simulated in terms of the Fried's coherence length and the Greenwood's frequency. Finally, two experiments are conducted in which the SR of different simulated conditions are measured. The results of the experiments show that for a moderate SNR of SH the experimenting AO system is capable of closed-loop wavefront correction when the Fried's coherence length is larger than 5cm and the Greenwood's frequency is lower than 60 Hz. The results also show that the performance of AO is susceptible to the SNR of SH. The experiments validates the effectiveness of this method.
AbstractList In this article, a method for measuring the performance of adaptive optics (AO) systems is designed and validated by experiments. The Strehl ratio (SR) which is based on the target images is used to evaluate the performance quantitatively because it relates to the effect of AO correction directly. In the calculation of the SR, to avoid energy scaling in the diffraction-limited point spread function, an algorithm based on the integral of the optical transfer function (OTF) is proposed. Then, a 97-element AO system is established to validate this method, and a white-light fiber source is used as a point-like target. To simulate the practical conditions which influence the performance of the AO system, targets of different brightness are simulated in terms of different signal-to-noise ratios (SNRs) of the Shack-Hartmann (SH), and atmospheric turbulence is simulated in terms of the Fried's coherence length and the Greenwood's frequency. Finally, two experiments are conducted in which the SR of different simulated conditions are measured. The results of the experiments show that for a moderate SNR of SH the experimenting AO system is capable of closed-loop wavefront correction when the Fried's coherence length is larger than 5cm and the Greenwood's frequency is lower than 60 Hz. The results also show that the performance of AO is susceptible to the SNR of SH. The experiments validates the effectiveness of this method.
In this article, a method for measuring the performance of adaptive optics (AO) systems is designed and validated by experiments. The Strehl ratio (SR) which is based on the target images is used to evaluate the performance quantitatively because it relates to the effect of AO correction directly. In the calculation of the SR, to avoid energy scaling in the diffraction-limited point spread function, an algorithm based on the integral of the optical transfer function (OTF) is proposed. Then, a 97-element AO system is established to validate this method, and a white-light fiber source is used as a point-like target. To simulate the practical conditions which influence the performance of the AO system, targets of different brightness are simulated in terms of different signal-to-noise ratios (SNRs) of the Shack-Hartmann (SH), and atmospheric turbulence is simulated in terms of the Fried's coherence length and the Greenwood's frequency. Finally, two experiments are conducted in which the SR of different simulated conditions are measured. The results of the experiments show that for a moderate SNR of SH the experimenting AO system is capable of closed-loop wavefront correction when the Fried's coherence length is larger than 5cm and the Greenwood's frequency is lower than 60 Hz. The results also show that the performance of AO is susceptible to the SNR of SH. The experiments validates the effectiveness of this method.
Author Wang Liang Chen Tao Lin Xudong Wei Peifeng Liu Xinyue Jia Jianlu
AuthorAffiliation Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchtm 130033, China University of Chinese Academy of Sciences, Beijing 100049, China
Author_xml – sequence: 1
  givenname: Wang
  surname: Liang
  fullname: Liang, Wang
  organization: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
– sequence: 2
  givenname: Chen
  surname: Tao
  fullname: Tao, Chen
  organization: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
– sequence: 3
  givenname: Lin
  surname: Xudong
  fullname: Xudong, Lin
  organization: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
– sequence: 4
  givenname: Wei
  surname: Peifeng
  fullname: Peifeng, Wei
  organization: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
– sequence: 5
  givenname: Liu
  surname: Xinyue
  fullname: Xinyue, Liu
  email: sirliuxy@hotmail.com
  organization: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
– sequence: 6
  givenname: Jia
  surname: Jianlu
  fullname: Jianlu, Jia
  organization: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
BookMark eNqFkE1LAzEQhnOoYP34CULwpIfVJLvJZvEgIloFQaF6DtnsRCO7SU3SQv-9W1s8ePE0zPB-DM8BmvjgAaETSi4ooeJyTgnhhZSSn1FxLggpZdFM0PT3vI8OUvokpGKMiCmavUC0IQ7aG8AD6LSMMIDPOFisO73IbgU4jMMknNYpw4BbnaDDweN5jvDR46izC0doz-o-wfFuHqK3-7vX24fi6Xn2eHvzVBgmq1yUVSkEqw0xzFJZ06YVDEBQC0bUkjey6jiIqi2h1RWzpJMUeMsZIQJqa-vyEJ1tcxcxfC0hZTW4ZKDvtYewTIpKzktRykaO0qut1MSQUgSrjMubX32O2vWKErVBpn6QqQ0bNW4_yFQzuvkf9yK6Qcf1v77rrQ9GCisHUSXjYKTbuQgmqy64fxNOd80fwb9_Of_-Wy1Ew1lVS1J-A6jSkwA
CitedBy_id crossref_primary_10_1016_j_ijleo_2019_163419
crossref_primary_10_1016_j_ijleo_2018_09_081
crossref_primary_10_1016_j_optcom_2016_12_076
Cites_doi 10.3788/LOP51.090003
10.3788/gzxb20154407.0701001
10.3788/OPE.20142205.1204
10.1117/12.321670
10.1364/JOSAA.24.002334
10.1364/JOSAA.14.002884
10.3788/OPE.20142210.2605
10.7498/aps.59.8280
10.1364/AO.44.006388
10.1086/499498
10.1117/12.20396
10.1086/343221
10.1117/1.OE.54.6.063106
10.1364/OE.17.008525
10.1364/OE.17.009330
10.1117/12.549115
10.3788/gzxb20154405.0511001
10.1364/OE.22.013792
10.3788/YJYXS20153001.0001b
ContentType Journal Article
Copyright 2016 The Journal of China Universities of Posts and Telecommunications
Copyright_xml – notice: 2016 The Journal of China Universities of Posts and Telecommunications
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1016/S1005-8885(16)60038-9
DatabaseName 维普中文科技期刊数据库
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Performance measurement of adaptive optics system based on Strehl ratio
EndPage 100
ExternalDocumentID 10_1016_S1005_8885_16_60038_9
S1005888516600389
669524780
GroupedDBID --K
--M
-SI
-S~
.~1
0R~
123
188
1B1
1~.
1~5
2B.
2C0
2RA
4.4
457
4G.
5VR
5VS
7-5
71M
8P~
8RM
92H
92I
92L
92R
93N
9D9
9DI
AAEDT
AAIKJ
AALRI
AAOAW
AAQFI
AAXUO
ABXDB
ADEZE
ADMUD
ADTZH
AECPX
AEKER
AFUIB
AGHFR
AGYEJ
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
BLXMC
CAJEI
CAJUS
CCEZO
CHBEP
CQIGP
CS3
CUBFJ
CW9
DU5
EBS
EFLBG
EJD
EO9
EP2
EP3
FA0
FDB
FNPLU
GBLVA
HZ~
J1W
JJJVA
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q--
Q-8
Q38
RIG
ROL
SDF
SDG
SES
T5K
TCJ
TGT
U1G
U5S
UGNYK
UZ4
W92
~NJ
~WA
AAYXX
ABWVN
ACRPL
ADNMO
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c284t-3436627c0c2f18719b62ee61fec6785984d5e64b3eba42f0d81e5b52006e7ff73
IEDL.DBID .~1
ISSN 1005-8885
IngestDate Fri Sep 05 03:11:02 EDT 2025
Thu Apr 24 23:08:10 EDT 2025
Tue Jul 01 01:53:46 EDT 2025
Fri Feb 23 02:23:47 EST 2024
Wed Feb 14 10:17:32 EST 2024
IsPeerReviewed false
IsScholarly false
Issue 3
Keywords adaptive optics
Strehl ratio
turbulence simulator
performance measurement
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c284t-3436627c0c2f18719b62ee61fec6785984d5e64b3eba42f0d81e5b52006e7ff73
Notes 11-3486/TN
In this article, a method for measuring the performance of adaptive optics (AO) systems is designed and validated by experiments. The Strehl ratio (SR) which is based on the target images is used to evaluate the performance quantitatively because it relates to the effect of AO correction directly. In the calculation of the SR, to avoid energy scaling in the diffraction-limited point spread function, an algorithm based on the integral of the optical transfer function (OTF) is proposed. Then, a 97-element AO system is established to validate this method, and a white-light fiber source is used as a point-like target. To simulate the practical conditions which influence the performance of the AO system, targets of different brightness are simulated in terms of different signal-to-noise ratios (SNRs) of the Shack-Hartmann (SH), and atmospheric turbulence is simulated in terms of the Fried's coherence length and the Greenwood's frequency. Finally, two experiments are conducted in which the SR of different simulated conditions are measured. The results of the experiments show that for a moderate SNR of SH the experimenting AO system is capable of closed-loop wavefront correction when the Fried's coherence length is larger than 5cm and the Greenwood's frequency is lower than 60 Hz. The results also show that the performance of AO is susceptible to the SNR of SH. The experiments validates the effectiveness of this method.
adaptive optics, performance measurement, Strehl ratio, turbulence simulator
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1855363898
PQPubID 23500
PageCount 7
ParticipantIDs proquest_miscellaneous_1855363898
crossref_citationtrail_10_1016_S1005_8885_16_60038_9
crossref_primary_10_1016_S1005_8885_16_60038_9
elsevier_sciencedirect_doi_10_1016_S1005_8885_16_60038_9
chongqing_primary_669524780
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-06-01
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Journal of China universities of posts and telecommunications
PublicationTitleAlternate The Journal of China Universities of Posts and Telecommunications
PublicationYear 2016
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References van Dam, Bouchez, Le Mignant (bib12) 2006; 118
Liang, Williams, Miller (bib3) 1997; 14
Weyrauch, Vorontsov (bib15) 2005; 4
Sauvage, Fusco, Rousset (bib20) 2007; 24
Yang, Xia, Zhang (bib9) 2015; 54
Mu, Cao, Peng (bib8) 2009; 17
Huang, Zhang, Deng (bib2) 2014; 22
Hardy (bib1) 1998
Mu, Rao, Li (bib19) 2012; 39
Goodman (bib21) 1996
Guo, Rao, Bao (bib14) 2014; 22
Xiong, Ai, Shan (bib17) 2013; 42
Booth (bib4) 2014
Sivaramakrishnan, Oppenheimer (bib22) 1998; 3353
Wei, Liu, Lin (bib26) 2013; 6
Ma, Rao, Zheng (bib24) 2009; 17
Jiang, Li (bib27) 1990; 1271
Xuan, Li, Liu (bib7) 2015; 30
Han, Wang (bib16) 2013; 42
Wei, Lu, Liu (bib25) 2015; 44
Liu, Chen, Liao (bib10) 2014; 22
Roberts, Neyman (bib11) 2002; 114
Roberts, Perrin, Marchis (bib13) 2004; 5490
Bai, Rao (bib18) 2010; 59
Wang, Chen, Liu (bib5) 2015; 44
Ren, Rao, Li (bib23) 2002; 29
Lin, Liu, Wang (bib6) 2014; 51
van Dam (10.1016/S1005-8885(16)60038-9_bib12) 2006; 118
Wei (10.1016/S1005-8885(16)60038-9_bib25) 2015; 44
Goodman (10.1016/S1005-8885(16)60038-9_bib21) 1996
Ma (10.1016/S1005-8885(16)60038-9_bib24) 2009; 17
Sivaramakrishnan (10.1016/S1005-8885(16)60038-9_bib22) 1998; 3353
Wang (10.1016/S1005-8885(16)60038-9_bib5) 2015; 44
Sauvage (10.1016/S1005-8885(16)60038-9_bib20) 2007; 24
Xuan (10.1016/S1005-8885(16)60038-9_bib7) 2015; 30
Yang (10.1016/S1005-8885(16)60038-9_bib9) 2015; 54
Roberts (10.1016/S1005-8885(16)60038-9_bib13) 2004; 5490
Jiang (10.1016/S1005-8885(16)60038-9_bib27) 1990; 1271
Hardy (10.1016/S1005-8885(16)60038-9_bib1) 1998
Booth (10.1016/S1005-8885(16)60038-9_bib4) 2014
Lin (10.1016/S1005-8885(16)60038-9_bib6) 2014; 51
Roberts (10.1016/S1005-8885(16)60038-9_bib11) 2002; 114
Liu (10.1016/S1005-8885(16)60038-9_bib10) 2014; 22
Weyrauch (10.1016/S1005-8885(16)60038-9_bib15) 2005; 4
Ren (10.1016/S1005-8885(16)60038-9_bib23) 2002; 29
Mu (10.1016/S1005-8885(16)60038-9_bib8) 2009; 17
Mu (10.1016/S1005-8885(16)60038-9_bib19) 2012; 39
Huang (10.1016/S1005-8885(16)60038-9_bib2) 2014; 22
Han (10.1016/S1005-8885(16)60038-9_bib16) 2013; 42
Bai (10.1016/S1005-8885(16)60038-9_bib18) 2010; 59
Liang (10.1016/S1005-8885(16)60038-9_bib3) 1997; 14
Guo (10.1016/S1005-8885(16)60038-9_bib14) 2014; 22
Xiong (10.1016/S1005-8885(16)60038-9_bib17) 2013; 42
Wei (10.1016/S1005-8885(16)60038-9_bib26) 2013; 6
References_xml – volume: 118
  start-page: 310
  year: 2006
  end-page: 318
  ident: bib12
  article-title: The W. M. Keck observatory laser guide star adaptive optics system: performance characterization
  publication-title: The Publications of the Astronomical Society of the Pacific
– start-page: 126
  year: 1996
  end-page: 150
  ident: bib21
  publication-title: Introduction to Fourier optics
– volume: 29
  start-page: 1
  year: 2002
  end-page: 5
  ident: bib23
  article-title: An adaptive threshold selection method for hartmann-shack wavefront sensor
  publication-title: Opto-Electronic Engineering
– volume: 24
  start-page: 2334
  year: 2007
  end-page: 2346
  ident: bib20
  article-title: Calibration and precompensation of noncommon path aberrations for extreme adaptive optics
  publication-title: Journal of the Optical Society of America
– start-page: e165
  year: 2014
  ident: bib4
  publication-title: Adaptive optical microscopy: The ongoing quest for a perfect image
– volume: 5490
  start-page: 504
  year: 2004
  end-page: 515
  ident: bib13
  article-title: Is that really your Strehl ratio
  publication-title: Proceedings of SPIE
– volume: 42
  start-page: 125
  year: 2013
  end-page: 129
  ident: bib16
  article-title: Fiber coupling efficiency and Strehl ratio for space optical communication based on adaptive optics correction
  publication-title: Infrared and Laser Engineering
– volume: 3353
  start-page: 910
  year: 1998
  end-page: 916
  ident: bib22
  article-title: Deformable mirror calibration for adaptive optics systems
  publication-title: Proceedings of SPIE
– volume: 22
  start-page: 13792
  year: 2014
  end-page: 13803
  ident: bib14
  article-title: Multichannel-Hadamard calibration of high-order adaptive optics systems
  publication-title: Optics Express
– volume: 51
  start-page: 090003
  year: 2014
  ident: bib6
  article-title: Progress of the continuous surface deformable mirror based on piezo-ceramic actuator
  publication-title: Laser & Optoelectronics Progress
– volume: 44
  start-page: 0701001
  year: 2015
  ident: bib25
  article-title: Performance analysis of adaptive optical system for spatial objectives
  publication-title: Acta Photonica Sinica
– start-page: 3
  year: 1998
  end-page: 24
  ident: bib1
  publication-title: Adaptive optics for astronomical telescopes
– volume: 6
  start-page: 371
  year: 2013
  end-page: 377
  ident: bib26
  article-title: Temporal simulation of atmospheric turbulence during adaptive optics system testing
  publication-title: Chinese Optics
– volume: 1271
  start-page: 82
  year: 1990
  end-page: 93
  ident: bib27
  article-title: Hartmann-Shack wavefront sensing and wavefront control algorithm
  publication-title: Proceedings of SPIE
– volume: 14
  start-page: 2884
  year: 1997
  end-page: 2892
  ident: bib3
  article-title: Supernormal vision and high-resolution retinal imaging through adaptive optics
  publication-title: Journal of the Optical Society of America
– volume: 30
  start-page: 1
  year: 2015
  end-page: 9
  ident: bib7
  article-title: Prospect of liquid crystal adaptive optics in astronomy application
  publication-title: Chinese Journal of Liquid Crystals and Displays
– volume: 4
  start-page: 6388
  year: 2005
  end-page: 6401
  ident: bib15
  article-title: Atmospheric compensation with a speckle beacon in strong scintillation conditions: Directed energy and laser communication applications
  publication-title: Applied Optics
– volume: 44
  start-page: 0511001
  year: 2015
  ident: bib5
  article-title: Compensation of the non-common path aberrations in an adaptive optics system with a wavefront processor
  publication-title: Acta Photonica Sinica
– volume: 42
  start-page: 2510
  year: 2013
  end-page: 2514
  ident: bib17
  article-title: Fiber coupling efficiency and compensation analysis for free space optical communication
  publication-title: Infrared and Laser Engineering
– volume: 17
  start-page: 8525
  year: 2009
  end-page: 8541
  ident: bib24
  article-title: Error analysis of CCD-based point source centroid computation under the background light
  publication-title: Optics Express
– volume: 17
  start-page: 9330
  year: 2009
  end-page: 9336
  ident: bib8
  article-title: Modal interaction matrix measurement for liquid-crystal corrector: Precision evaluation
  publication-title: Optics Express
– volume: 114
  start-page: 1260
  year: 2002
  end-page: 1266
  ident: bib11
  article-title: Characterization of the AEOS adaptive optics system
  publication-title: The Publications of the Astronomical Society of the Pacific
– volume: 59
  start-page: 8280
  year: 2010
  end-page: 8286
  ident: bib18
  article-title: Effect of pinhole diameter on correction accuracy of closed-loop adaptive optics system using self-referencing interferometer wavefront sensor
  publication-title: Acta Physica Sinica
– volume: 39
  start-page: 34
  year: 2012
  end-page: 40
  ident: bib19
  article-title: The embedded processing platform design based on FPGA and DSP of an adaptive optics system on-line performance evaluation
  publication-title: Opto-Electronic Engineering
– volume: 22
  start-page: 1204
  year: 2014
  end-page: 1211
  ident: bib2
  article-title: Boundary parameters of adaptive optical system in satellite to ground coherent laser communication system
  publication-title: Optics and Precision Engineering
– volume: 22
  start-page: 2605
  year: 2014
  end-page: 2610
  ident: bib10
  article-title: Correction of atmospheric turbulence by adaptive optics in waveband of free-space coherent laser communication
  publication-title: Optics and Precision Engineering
– volume: 54
  start-page: 063106
  year: 2015
  ident: bib9
  article-title: Efficient and low-latency pixel data transmission module for adaptive optics wavefront processor based on field-programmable gate array
  publication-title: Optical Engineering
– start-page: 3
  year: 1998
  ident: 10.1016/S1005-8885(16)60038-9_bib1
– volume: 51
  start-page: 090003
  issue: 9
  year: 2014
  ident: 10.1016/S1005-8885(16)60038-9_bib6
  article-title: Progress of the continuous surface deformable mirror based on piezo-ceramic actuator
  publication-title: Laser & Optoelectronics Progress
  doi: 10.3788/LOP51.090003
– volume: 44
  start-page: 0701001
  issue: 7
  year: 2015
  ident: 10.1016/S1005-8885(16)60038-9_bib25
  article-title: Performance analysis of adaptive optical system for spatial objectives
  publication-title: Acta Photonica Sinica
  doi: 10.3788/gzxb20154407.0701001
– volume: 6
  start-page: 371
  issue: 3
  year: 2013
  ident: 10.1016/S1005-8885(16)60038-9_bib26
  article-title: Temporal simulation of atmospheric turbulence during adaptive optics system testing
  publication-title: Chinese Optics
– volume: 22
  start-page: 1204
  issue: 5
  year: 2014
  ident: 10.1016/S1005-8885(16)60038-9_bib2
  article-title: Boundary parameters of adaptive optical system in satellite to ground coherent laser communication system
  publication-title: Optics and Precision Engineering
  doi: 10.3788/OPE.20142205.1204
– volume: 3353
  start-page: 910
  year: 1998
  ident: 10.1016/S1005-8885(16)60038-9_bib22
  article-title: Deformable mirror calibration for adaptive optics systems
  publication-title: Proceedings of SPIE
  doi: 10.1117/12.321670
– volume: 29
  start-page: 1
  issue: 1
  year: 2002
  ident: 10.1016/S1005-8885(16)60038-9_bib23
  article-title: An adaptive threshold selection method for hartmann-shack wavefront sensor
  publication-title: Opto-Electronic Engineering
– volume: 24
  start-page: 2334
  issue: 8
  year: 2007
  ident: 10.1016/S1005-8885(16)60038-9_bib20
  article-title: Calibration and precompensation of noncommon path aberrations for extreme adaptive optics
  publication-title: Journal of the Optical Society of America
  doi: 10.1364/JOSAA.24.002334
– volume: 42
  start-page: 125
  issue: 1
  year: 2013
  ident: 10.1016/S1005-8885(16)60038-9_bib16
  article-title: Fiber coupling efficiency and Strehl ratio for space optical communication based on adaptive optics correction
  publication-title: Infrared and Laser Engineering
– volume: 14
  start-page: 2884
  issue: 11
  year: 1997
  ident: 10.1016/S1005-8885(16)60038-9_bib3
  article-title: Supernormal vision and high-resolution retinal imaging through adaptive optics
  publication-title: Journal of the Optical Society of America
  doi: 10.1364/JOSAA.14.002884
– volume: 22
  start-page: 2605
  issue: 10
  year: 2014
  ident: 10.1016/S1005-8885(16)60038-9_bib10
  article-title: Correction of atmospheric turbulence by adaptive optics in waveband of free-space coherent laser communication
  publication-title: Optics and Precision Engineering
  doi: 10.3788/OPE.20142210.2605
– volume: 59
  start-page: 8280
  issue: 11
  year: 2010
  ident: 10.1016/S1005-8885(16)60038-9_bib18
  article-title: Effect of pinhole diameter on correction accuracy of closed-loop adaptive optics system using self-referencing interferometer wavefront sensor
  publication-title: Acta Physica Sinica
  doi: 10.7498/aps.59.8280
– start-page: e165
  year: 2014
  ident: 10.1016/S1005-8885(16)60038-9_bib4
– volume: 4
  start-page: 6388
  issue: 30
  year: 2005
  ident: 10.1016/S1005-8885(16)60038-9_bib15
  article-title: Atmospheric compensation with a speckle beacon in strong scintillation conditions: Directed energy and laser communication applications
  publication-title: Applied Optics
  doi: 10.1364/AO.44.006388
– volume: 118
  start-page: 310
  year: 2006
  ident: 10.1016/S1005-8885(16)60038-9_bib12
  article-title: The W. M. Keck observatory laser guide star adaptive optics system: performance characterization
  publication-title: The Publications of the Astronomical Society of the Pacific
  doi: 10.1086/499498
– start-page: 126
  year: 1996
  ident: 10.1016/S1005-8885(16)60038-9_bib21
– volume: 1271
  start-page: 82
  year: 1990
  ident: 10.1016/S1005-8885(16)60038-9_bib27
  article-title: Hartmann-Shack wavefront sensing and wavefront control algorithm
  publication-title: Proceedings of SPIE
  doi: 10.1117/12.20396
– volume: 114
  start-page: 1260
  issue: 801
  year: 2002
  ident: 10.1016/S1005-8885(16)60038-9_bib11
  article-title: Characterization of the AEOS adaptive optics system
  publication-title: The Publications of the Astronomical Society of the Pacific
  doi: 10.1086/343221
– volume: 39
  start-page: 34
  issue: 6
  year: 2012
  ident: 10.1016/S1005-8885(16)60038-9_bib19
  article-title: The embedded processing platform design based on FPGA and DSP of an adaptive optics system on-line performance evaluation
  publication-title: Opto-Electronic Engineering
– volume: 54
  start-page: 063106
  issue: 6
  year: 2015
  ident: 10.1016/S1005-8885(16)60038-9_bib9
  article-title: Efficient and low-latency pixel data transmission module for adaptive optics wavefront processor based on field-programmable gate array
  publication-title: Optical Engineering
  doi: 10.1117/1.OE.54.6.063106
– volume: 17
  start-page: 8525
  issue: 10
  year: 2009
  ident: 10.1016/S1005-8885(16)60038-9_bib24
  article-title: Error analysis of CCD-based point source centroid computation under the background light
  publication-title: Optics Express
  doi: 10.1364/OE.17.008525
– volume: 17
  start-page: 9330
  issue: 11
  year: 2009
  ident: 10.1016/S1005-8885(16)60038-9_bib8
  article-title: Modal interaction matrix measurement for liquid-crystal corrector: Precision evaluation
  publication-title: Optics Express
  doi: 10.1364/OE.17.009330
– volume: 5490
  start-page: 504
  year: 2004
  ident: 10.1016/S1005-8885(16)60038-9_bib13
  article-title: Is that really your Strehl ratio
  publication-title: Proceedings of SPIE
  doi: 10.1117/12.549115
– volume: 44
  start-page: 0511001
  issue: 5
  year: 2015
  ident: 10.1016/S1005-8885(16)60038-9_bib5
  article-title: Compensation of the non-common path aberrations in an adaptive optics system with a wavefront processor
  publication-title: Acta Photonica Sinica
  doi: 10.3788/gzxb20154405.0511001
– volume: 22
  start-page: 13792
  issue: 11
  year: 2014
  ident: 10.1016/S1005-8885(16)60038-9_bib14
  article-title: Multichannel-Hadamard calibration of high-order adaptive optics systems
  publication-title: Optics Express
  doi: 10.1364/OE.22.013792
– volume: 30
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/S1005-8885(16)60038-9_bib7
  article-title: Prospect of liquid crystal adaptive optics in astronomy application
  publication-title: Chinese Journal of Liquid Crystals and Displays
  doi: 10.3788/YJYXS20153001.0001b
– volume: 42
  start-page: 2510
  issue: 9
  year: 2013
  ident: 10.1016/S1005-8885(16)60038-9_bib17
  article-title: Fiber coupling efficiency and compensation analysis for free space optical communication
  publication-title: Infrared and Laser Engineering
SSID ssj0042206
Score 1.6744851
Snippet In this article, a method for measuring the performance of adaptive optics (AO) systems is designed and validated by experiments. The Strehl ratio (SR) which...
In this article, a method for measuring the performance of adaptive optics (AO) systems is designed and validated by experiments. The Strehl ratio (SR) which...
SourceID proquest
crossref
elsevier
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 94
SubjectTerms Adaptive optics
Algorithms
Coherence
Computer simulation
Optical transfer function
Performance measurement
Strehl ratio
Strehl比
turbulence simulator
White light
光学传递函数
性能
模拟条件
波前校正
测量方法
相干长度
自适应光学系统
Title Performance measurement of adaptive optics system based on Strehl ratio
URI http://lib.cqvip.com/qk/84121X/201603/669524780.html
https://dx.doi.org/10.1016/S1005-8885(16)60038-9
https://www.proquest.com/docview/1855363898
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA_DJ30QP3FOJYIP-pBtbdM0eZThHIIi6GBvoW1SN5ht1e3Vv927fk0FGfjYkBzlcrmP5O53hFx4bhBD4OMxEYacQfxlmOIqYv0wSALPOsq3eA95_yBGY3438SctMqhrYTCtstL9pU4vtHU10qu42ctns96Tgy3xJHgMQuD7FhbxcR6grHc_mzQP7rpFf02czHD2qoqnpFAMXjriqiDCFGIsTLP05Q0sx1-26pfWLkzRcIdsVz4kvS5_c5e0bLpHtr4hC-6T28dVQQB9Xd0D0iyhoQlzVHI0yxGjmZZgzhTtmaFZSvGhejqnhWgckPHw5nkwYlXPBBaDoVkwj3sI6R73YzdxIBhSkXCtFU5iYzBLvpLc-FbwyLNRyN2kb6Rj_Qixl4QNEtieQ7KRZqk9ItRwk0hwJyAiSrhvA9k3Ck4vhDTcRNK6bdJpOKXzEhtDC6F8l8PcNuE173RcwY1j14u5bvLKkP0a2a_hq2C_Vm3SbZbVNNcskPXG6B-Co8EmrFt6Xm-khkOFLyVharPlhwYnxvfQl5PH_yffIZvgXYkyr-yEbCzel_YUPJhFdFaI6BdhIeY7
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB58HNSD-MT1GcGDHuJu2yRtjiLq-kRQwVtom9QVtF11vfrbneljVwURPDYkQ5kk880kk28AdgI_TDHwCbiKY8Ex_rJcC53wThxmYeA8LR2dQ15eqe6dOLuX92Nw2LyFobTK2vZXNr201nVLu9Zmu__42L7xqCRehB6DUnS_pcdhUsggpLy-_Y9hnofw_bLAJvXm1H30jKcSUTbuemqvlMI1kSz0ivzhBaHjN7D6YbZLLDqeg9naiWQH1X_Ow5jLF2DmC7XgIpxcj14EsOfRQSArMhbbuE9WjhV9ImlmFZszI0CzrMgZ3VT3nli5Npbg7vjo9rDL66IJPEWkGfBABMTpnnZSP_MwGtKJ8p1TXuZSxCWpI2GlUyIJXBILP-vYyHMyIfIl5cIM52cZJvIidyvArLBZhP4EhkSZkC6MOlbj9sWYRtgkcn4L1oaaMv2KHMMopaUvsG8LRKM7k9Z841T24skME8tI_YbUb_CrVL_RLdgfDmtk_jEgaibGfFs5BkHhr6HbzUQa3FV0VRLnrnh_M-jFyICcuWj1_-K3YKp7e3lhLk6vztdgGl0tVSWZrcPE4PXdbaA7M0g2y-X6CQYD6Vw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+measurement+of+adaptive+optics+system+based+on+Strehl+ratio&rft.jtitle=Journal+of+China+universities+of+posts+and+telecommunications&rft.au=Liang%2C+Wang&rft.au=Tao%2C+Chen&rft.au=Xudong%2C+Lin&rft.au=Peifeng%2C+Wei&rft.date=2016-06-01&rft.issn=1005-8885&rft.volume=23&rft.issue=3&rft.spage=94&rft.epage=100&rft_id=info:doi/10.1016%2FS1005-8885%2816%2960038-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S1005_8885_16_60038_9
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F84121X%2F84121X.jpg