Performance measurement of adaptive optics system based on Strehl ratio

In this article, a method for measuring the performance of adaptive optics (AO) systems is designed and validated by experiments. The Strehl ratio (SR) which is based on the target images is used to evaluate the performance quantitatively because it relates to the effect of AO correction directly. I...

Full description

Saved in:
Bibliographic Details
Published inJournal of China universities of posts and telecommunications Vol. 23; no. 3; pp. 94 - 100
Main Authors Liang, Wang, Tao, Chen, Xudong, Lin, Peifeng, Wei, Xinyue, Liu, Jianlu, Jia
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.06.2016
Subjects
Online AccessGet full text
ISSN1005-8885
DOI10.1016/S1005-8885(16)60038-9

Cover

Loading…
More Information
Summary:In this article, a method for measuring the performance of adaptive optics (AO) systems is designed and validated by experiments. The Strehl ratio (SR) which is based on the target images is used to evaluate the performance quantitatively because it relates to the effect of AO correction directly. In the calculation of the SR, to avoid energy scaling in the diffraction-limited point spread function, an algorithm based on the integral of the optical transfer function (OTF) is proposed. Then, a 97-element AO system is established to validate this method, and a white-light fiber source is used as a point-like target. To simulate the practical conditions which influence the performance of the AO system, targets of different brightness are simulated in terms of different signal-to-noise ratios (SNRs) of the Shack-Hartmann (SH), and atmospheric turbulence is simulated in terms of the Fried's coherence length and the Greenwood's frequency. Finally, two experiments are conducted in which the SR of different simulated conditions are measured. The results of the experiments show that for a moderate SNR of SH the experimenting AO system is capable of closed-loop wavefront correction when the Fried's coherence length is larger than 5cm and the Greenwood's frequency is lower than 60 Hz. The results also show that the performance of AO is susceptible to the SNR of SH. The experiments validates the effectiveness of this method.
Bibliography:11-3486/TN
In this article, a method for measuring the performance of adaptive optics (AO) systems is designed and validated by experiments. The Strehl ratio (SR) which is based on the target images is used to evaluate the performance quantitatively because it relates to the effect of AO correction directly. In the calculation of the SR, to avoid energy scaling in the diffraction-limited point spread function, an algorithm based on the integral of the optical transfer function (OTF) is proposed. Then, a 97-element AO system is established to validate this method, and a white-light fiber source is used as a point-like target. To simulate the practical conditions which influence the performance of the AO system, targets of different brightness are simulated in terms of different signal-to-noise ratios (SNRs) of the Shack-Hartmann (SH), and atmospheric turbulence is simulated in terms of the Fried's coherence length and the Greenwood's frequency. Finally, two experiments are conducted in which the SR of different simulated conditions are measured. The results of the experiments show that for a moderate SNR of SH the experimenting AO system is capable of closed-loop wavefront correction when the Fried's coherence length is larger than 5cm and the Greenwood's frequency is lower than 60 Hz. The results also show that the performance of AO is susceptible to the SNR of SH. The experiments validates the effectiveness of this method.
adaptive optics, performance measurement, Strehl ratio, turbulence simulator
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1005-8885
DOI:10.1016/S1005-8885(16)60038-9