Analysis of Sleep, Nocturnal Physiology, and Physical Demands of NCAA Women's Ice Hockey Across a Championship Season

Merrigan, JJ, Stone, JD, Kraemer, WJ, Friend, C, Lennon, K, Vatne, EA, and Hagen, JA. Analysis of sleep, nocturnal physiology, and physical demands of NCAA women's ice hockey across a championship season. J Strength Cond Res 38(4): 694-703, 2024-The aims of this study were to evaluate the (a) r...

Full description

Saved in:
Bibliographic Details
Published inJournal of strength and conditioning research Vol. 38; no. 4; p. 694
Main Authors Merrigan, Justin J, Stone, Jason D, Kraemer, William J, Friend, Christopher, Lennon, Kevin, Vatne, Emaly A, Hagen, Josh A
Format Journal Article
LanguageEnglish
Published United States 01.04.2024
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Merrigan, JJ, Stone, JD, Kraemer, WJ, Friend, C, Lennon, K, Vatne, EA, and Hagen, JA. Analysis of sleep, nocturnal physiology, and physical demands of NCAA women's ice hockey across a championship season. J Strength Cond Res 38(4): 694-703, 2024-The aims of this study were to evaluate the (a) relationships between daily physical demands and nighttime sleep, heart rate (HR), and heart rate variability (HRV); (b) weekly changes in physical demands and sleep; and (c) differences among positions and between training and competition during a competitive season in National Collegiate Athletic Association (NCAA) women's ice hockey. Twenty-five NCAA Division I women's ice hockey athletes wore a sensor at night to monitor sleep quantity or quality (e.g., time asleep and sleep efficiency) and physiology (e.g., HR and HRV). During training and competitions (31 regular season and 7 postseason), athletes wore performance monitoring systems to assess workload demands (e.g., training impulse and TRIMP). As internal workload (TRIMP, Time >80% of HRmax, Average HR) during training or competition increased, nocturnal HRV decreased, HR increased, and Sleep Duration, Sleep Score, and Readiness Score decreased that night. Across the season, athletes experienced lower HRV, but exhibited longer sleep durations. Training Distance, Duration, Time >80% HRmax, Average HR, and TRIMP decreased, whereas competition Total Distance, Duration, and TRIMP increased across weeks throughout the season. There were differences across positions and season blocks when evaluating these data at the mesocycle level. Athletes slept longer before competition compared with training, but physiological data did not differ. Competitions had greater physiological demands than training. We speculate that the increased focus on sleep hygiene, as evidenced by the increase in sleep over the season, may have served as a recovery aid to combat physiological stress of accumulated demands of competitions that increased over time into postseason tournaments.
ISSN:1064-8011
1533-4287
DOI:10.1519/JSC.0000000000004678