Physiological adaptations to exercise in people with spinal cord injury
The number of patients that suffer some type of spinal cord lesion in recent years are high and have increased because of factors such as traffic accidents. Although their life expectancy has increased, cardiovascular illnesses is one of the main causes of morbidity and mortality. Since the degree o...
Saved in:
Published in | Journal of physiology and biochemistry Vol. 59; no. 1; pp. 11 - 18 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Spain
01.03.2003
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The number of patients that suffer some type of spinal cord lesion in recent years are high and have increased because of factors such as traffic accidents. Although their life expectancy has increased, cardiovascular illnesses is one of the main causes of morbidity and mortality. Since the degree of physical fitness is an important factor regarding the risk of cardiovascular disease, the objective of the present study was to examine the global adaptation (cardiorespiratory, metabolic and thermoregulatory response) of the organism to exercise and the application of this data to the habitual practice of physical activity to improve state of health. A group of 42 patients with spinal injury, 85% of whom were paraplegic and the remaining 15% tetraplegic performed 42 exercise tests on a cycloergometer. Body temperature (tympanum, surface of the deltoids and surface of the back), metabolic parameters (plasma uric acid, glycemia, plasma lactate), cardiocirculatory adaptation (heart rate, blood pressure arm, blood pressure leg) and ventilatory adaptation (VO2, VCO2, fr Vt, VE) were monitored. Blood pressure in the arm, blood concentrations of lactate and ventilatory parameters showed an evolution statistically dependent on the work to which the subject was submitted. Heart rate showed a statistically significant correlation with the ventilatory parameters and work load. The proportional response of the cardioventilatory parameters to the increase in the work load allowed us to evaluate the repercussion of a given exercise and thus avoid exercise of an excessive intensity that could produce cardiocirculatory changes that might entail an added risk. Heart rate presents an excellent correlation, shown in this work, with the oxygen consumption and could therefore be used to quantify the cardiorespiratory and metabolic repercussion of the exercise carried out. Furthermore, this quantification may allow for the adaptation of exercise intensity to the patient thus improving the results obtained from the practice of exercise that has been proven so necessary in these patients. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1138-7548 1877-8755 |
DOI: | 10.1007/BF03179863 |