A noniterative perturbative triples correction for the spin-flipping and spin-conserving equation-of-motion coupled-cluster methods with single and double substitutions

A noniterative N7 triples correction for the equation-of-motion coupled-cluster method with single and double substitutions (CCSD) is presented. The correction is derived by second-order perturbation treatment of the similarity-transformed CCSD Hamiltonian. The spin-conserving variant of the correct...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of chemical physics Vol. 129; no. 19; p. 194105
Main Authors Manohar, Prashant U., Krylov, Anna I.
Format Journal Article
LanguageEnglish
Published United States 21.11.2008
Online AccessGet full text

Cover

Loading…
More Information
Summary:A noniterative N7 triples correction for the equation-of-motion coupled-cluster method with single and double substitutions (CCSD) is presented. The correction is derived by second-order perturbation treatment of the similarity-transformed CCSD Hamiltonian. The spin-conserving variant of the correction is identical to the triples correction of Piecuch and co-workers [Mol. Phys. 104, 2149 (2006)] derived within method-of-moments framework and is not size intensive. The spin-flip variant of the correction is size intensive. The performance of the correction is demonstrated by calculations of electronic excitation energies in methylene, nitrenium ion, cyclobutadiene, ortho-, meta-, and para-benzynes, 1,2,3-tridehydrobenzene, as well as C–C bond breaking in ethane. In all cases except cyclobutadiene, the absolute values of the correction for energy differences were 0.1 eV or less. In cyclobutadiene, the absolute values of the correction were as large as 0.4 eV. In most cases, the correction reduced the errors against the benchmark values by about a factor of 2–3, the absolute errors being less than 0.04 eV.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9606
1089-7690
1089-7690
DOI:10.1063/1.3013087