Crystal Structure, Infrared Reflection Spectrum, and Improved Microwave Dielectric Characteristics of Ba4Sm28/3Ti18O54 Ceramics via One-Step Reaction Sintering
High-k Ba4Sm28/3Ti18O54 ceramics with improved microwave dielectric characteristics were successfully fabricated using the one-step reaction sintering (RS) route. The sintering characteristics, microstructure, crystal structure, infrared reflection spectrum, and microwave dielectric characteristics...
Saved in:
Published in | Materials Vol. 17; no. 14; p. 3477 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
13.07.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | High-k Ba4Sm28/3Ti18O54 ceramics with improved microwave dielectric characteristics were successfully fabricated using the one-step reaction sintering (RS) route. The sintering characteristics, microstructure, crystal structure, infrared reflection spectrum, and microwave dielectric characteristics of Ba4Sm28/3Ti18O54 ceramics prepared by the RS route were systematically investigated. Samples prepared by the RS route exhibited single-phase orthorhombic tungsten–bronze structure and dense microstructure at optimum sintering temperature. Compared with the conventional solid-state (CS) process, the Ba4Sm28/3Ti18O54 ceramics fabricated by the RS route presented a smaller temperature coefficient (TCF), a higher quality factor (Q × f), and a higher permittivity (εr). The improved microwave dielectric characteristics were highly dependent on the theoretical permittivity, atomic packing fraction, suppression of Ti3+, and Ti-site bond valence. Excellent combined microwave dielectric characteristics (TCF = −7.9 ppm/°C, Q × f = 9519 GHz, εr = 80.26) were achieved for Ba4Sm28/3Ti18O54 ceramics prepared by RS route sintered at 1400 °C, suggesting the RS route was a straightforward, economical and effective route to prepare high-performance Ba4Sm28/3Ti18O54 ceramics with promising application potential. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1996-1944 1996-1944 |
DOI: | 10.3390/ma17143477 |