Sufficient conditions for feasibility of optimal control problems using Control Barrier Functions

It has been shown that satisfying state and control constraints while optimizing quadratic costs subject to desired (sets of) state convergence for affine control systems can be reduced to a sequence of quadratic programs (QPs) by using Control Barrier Functions (CBFs) and Control Lyapunov Functions...

Full description

Saved in:
Bibliographic Details
Published inAutomatica (Oxford) Vol. 135; p. 109960
Main Authors Xiao, Wei, Belta, Calin A., Cassandras, Christos G.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract It has been shown that satisfying state and control constraints while optimizing quadratic costs subject to desired (sets of) state convergence for affine control systems can be reduced to a sequence of quadratic programs (QPs) by using Control Barrier Functions (CBFs) and Control Lyapunov Functions (CLFs). One of the main challenges in this approach is ensuring the feasibility of these QPs, especially under tight control bounds and safety constraints of high relative degree. The main contribution of this paper is to provide sufficient conditions for guaranteed feasibility. The sufficient conditions are captured by a single constraint that is enforced by a CBF, which is added to the QPs such that their feasibility is always guaranteed. The additional constraint is designed to be always compatible with the existing constraints, therefore, it cannot make a feasible set of constraints infeasible — it can only increase the overall feasibility. We illustrate the effectiveness of the proposed approach on an adaptive cruise control problem.
AbstractList It has been shown that satisfying state and control constraints while optimizing quadratic costs subject to desired (sets of) state convergence for affine control systems can be reduced to a sequence of quadratic programs (QPs) by using Control Barrier Functions (CBFs) and Control Lyapunov Functions (CLFs). One of the main challenges in this approach is ensuring the feasibility of these QPs, especially under tight control bounds and safety constraints of high relative degree. The main contribution of this paper is to provide sufficient conditions for guaranteed feasibility. The sufficient conditions are captured by a single constraint that is enforced by a CBF, which is added to the QPs such that their feasibility is always guaranteed. The additional constraint is designed to be always compatible with the existing constraints, therefore, it cannot make a feasible set of constraints infeasible — it can only increase the overall feasibility. We illustrate the effectiveness of the proposed approach on an adaptive cruise control problem.
ArticleNumber 109960
Author Cassandras, Christos G.
Belta, Calin A.
Xiao, Wei
Author_xml – sequence: 1
  givenname: Wei
  surname: Xiao
  fullname: Xiao, Wei
  email: xiaowei@bu.edu
– sequence: 2
  givenname: Calin A.
  surname: Belta
  fullname: Belta, Calin A.
  email: cbelta@bu.edu
– sequence: 3
  givenname: Christos G.
  surname: Cassandras
  fullname: Cassandras, Christos G.
  email: cgc@bu.edu
BookMark eNqNkM9KAzEQh4NUsK2-Q15ga5L9fxFssSoUPKjnMJtMJGW7KUkq9O3N2oLgRS8Jmcl8zO-bkcngBiSEcrbgjFe32wUcottBtAoWggmeym1bsQsy5U2dZ6LJqwmZMsbKLHWaKzILYZueBW_ElMDrwRirLA6RKjdoG60bAjXOU4MQbGd7G4_UGer20e6gH39F73q6967rcRfoIdjhg67O5SV4b9HT9WFQ36xrcmmgD3hzvufkff3wtnrKNi-Pz6v7TabSiizrWtEZ5F2Vi1qLdHYaVaGxrcuyS52qxgZ1rtu61mVRARjIUTS6aAsoESCfk7sTV3kXgkcjlY0wrhA92F5yJkdhcit_hMlRmDwJS4DmF2DvU2J__M_o8jSKKeBnii_DqFShth5VlNrZvyFfXi-SKA
CitedBy_id crossref_primary_10_1016_j_automatica_2024_111921
crossref_primary_10_1109_TAC_2022_3202088
crossref_primary_10_1109_TASE_2024_3377131
crossref_primary_10_1016_j_mbs_2024_109142
crossref_primary_10_1109_TNSE_2024_3401592
crossref_primary_10_1002_rnc_7141
crossref_primary_10_1016_j_ifacol_2023_10_1818
crossref_primary_10_1109_LRA_2023_3322088
crossref_primary_10_1007_s11424_021_1230_x
crossref_primary_10_1016_j_automatica_2023_111238
crossref_primary_10_1016_j_automatica_2024_111530
crossref_primary_10_1109_TAC_2024_3383069
crossref_primary_10_3390_electronics12214549
crossref_primary_10_1016_j_jfranklin_2024_106906
crossref_primary_10_1016_j_arcontrol_2024_100944
crossref_primary_10_1109_TRO_2023_3249564
crossref_primary_10_1109_JIOT_2024_3389458
crossref_primary_10_1016_j_isatra_2024_03_010
crossref_primary_10_1016_j_neunet_2024_106968
crossref_primary_10_1109_TCNS_2024_3487612
crossref_primary_10_1007_s43684_024_00081_x
crossref_primary_10_1109_TIE_2023_3296810
crossref_primary_10_1109_TCNS_2022_3203350
crossref_primary_10_1080_00207721_2024_2304665
crossref_primary_10_1002_rnc_6585
Cites_doi 10.1109/LCSYS.2017.2710943
10.1109/TAC.2007.902736
10.1109/CDC42340.2020.9303857
10.1016/j.automatica.2008.11.017
10.1109/CDC.2013.6760627
10.23919/ACC.2019.8814657
10.1109/CDC.2013.6760091
10.1109/CDC.2014.7040372
10.1109/ACCESS.2015.2419630
10.3182/20070822-3-ZA-2920.00076
10.1109/ACC.2015.7171033
10.1109/CDC40024.2019.9029455
10.1109/ACC.2015.7172044
10.1109/LCSYS.2018.2853182
10.1145/3450267.3450542
10.1109/ACC.2016.7524935
10.1109/CDC.2012.6426229
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.automatica.2021.109960
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-2836
ExternalDocumentID 10_1016_j_automatica_2021_109960
S0005109821004866
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23N
3R3
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABDEX
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPGS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
T9H
TAE
TN5
VH1
WH7
WUQ
X6Y
XFK
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c2830-b92bfe1b6327d2632bdec4de9755bbfe67e8ed3d977d546aafa3e28d494a5eaa3
IEDL.DBID .~1
ISSN 0005-1098
IngestDate Tue Jul 01 00:44:35 EDT 2025
Thu Apr 24 23:07:34 EDT 2025
Fri Feb 23 02:42:25 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Control Barrier Function
Safety-critical control
Optimal control
Lyapunov methods
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2830-b92bfe1b6327d2632bdec4de9755bbfe67e8ed3d977d546aafa3e28d494a5eaa3
OpenAccessLink https://www.sciencedirect.com/science/article/am/pii/S0005109821004866?via%3Dihub
ParticipantIDs crossref_citationtrail_10_1016_j_automatica_2021_109960
crossref_primary_10_1016_j_automatica_2021_109960
elsevier_sciencedirect_doi_10_1016_j_automatica_2021_109960
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationTitle Automatica (Oxford)
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Prajna, Jadbabaie, Pappas (b15) 2007; 52
Ames, A. D., Galloway, K., & Grizzle, J. W. (2012). Control lyapunov functions and hybrid zero dynamics. In
(pp. 474–479).
Panagou, D., Stipanovic, D. M., & Voulgaris, P. G. (2013). Multi-objective control for multi-agent systems using Lyapunov-like barrier functions. In
Boyd, Vandenberghe (b5) 2004
(pp. 4454–4459).
(pp. 6837–6842).
Galloway, Sreenath, Ames, Grizzle (b8) 2015; 3
Khalil (b11) 2002
Wu, G., & Sreenath, K. (2015). Safety-critical and constrained geometric control synthesis using control lyapunov and control barrier functions for systems evolving on manifolds. In
Xiao, W., Mehdipour, N., Collin, A., Bin-Nun, A., Frazzoli, E., Tebbens, R., & Belta, C. (2021). Rule-based optimal control for autonomous driving. In
(pp. 6271–6278).
Bryson, Ho (b6) 1969
Ames, A. D., Grizzle, J. W., & Tabuada, P. (2014). Control barrier function based quadratic programs with application to adaptive cruise control. In
(pp. 4713–4718).
(pp. 4542–4548).
Denardo (b7) 2003
(pp. 143–154).
Rawlings, Mayne, Diehl (b16) 2018
Xiao, W., & Belta, C. (2019). Control barrier functions for systems with high relative degree. In
Hsu, S. C., Xu, X., & Ames, A. D. (2015). Control barrier function based quadratic programs with application to bipedal robotic walking. In
Tee, Ge, Tay (b17) 2009; 45
Wieland, P., & Allgower, F. (2007). Constructive safety using control barrier functions. In
Wisniewski, R., & Sloth, C. (2013). Converse barrier certificate theorem. In
Xiao, W., Belta, C., & Cassandras, C. G. (2020). Feasibility guided learning for constrained optimal control problems. In
(pp. 2038–2044).
Aubin (b4) 2009
Glotfelter, Cortes, Egerstedt (b9) 2017; 1
Lindemann, Dimarogonas (b12) 2019; 3
.
(pp. 1478–1483).
Xiao, Belta, Cassandras (b23) 2021
Abu-Khalaf, Huang, Lewis (b1) 2006
Yang, G., Belta, C., & Tron, R. (2019). Self-triggered control for safety critical systems using control barrier functions. In
(pp. 322–328).
(pp. 1896–1901).
Nguyen, Q., & Sreenath, K. (2016). Exponential control barrier functions for enforcing high relative-degree safety-critical constraints. In
Aubin (10.1016/j.automatica.2021.109960_b4) 2009
Abu-Khalaf (10.1016/j.automatica.2021.109960_b1) 2006
Galloway (10.1016/j.automatica.2021.109960_b8) 2015; 3
Tee (10.1016/j.automatica.2021.109960_b17) 2009; 45
10.1016/j.automatica.2021.109960_b25
10.1016/j.automatica.2021.109960_b3
10.1016/j.automatica.2021.109960_b2
Boyd (10.1016/j.automatica.2021.109960_b5) 2004
10.1016/j.automatica.2021.109960_b20
10.1016/j.automatica.2021.109960_b24
10.1016/j.automatica.2021.109960_b21
Bryson (10.1016/j.automatica.2021.109960_b6) 1969
10.1016/j.automatica.2021.109960_b22
Denardo (10.1016/j.automatica.2021.109960_b7) 2003
10.1016/j.automatica.2021.109960_b14
Rawlings (10.1016/j.automatica.2021.109960_b16) 2018
10.1016/j.automatica.2021.109960_b18
10.1016/j.automatica.2021.109960_b19
Xiao (10.1016/j.automatica.2021.109960_b23) 2021
Prajna (10.1016/j.automatica.2021.109960_b15) 2007; 52
10.1016/j.automatica.2021.109960_b13
10.1016/j.automatica.2021.109960_b10
Glotfelter (10.1016/j.automatica.2021.109960_b9) 2017; 1
Khalil (10.1016/j.automatica.2021.109960_b11) 2002
Lindemann (10.1016/j.automatica.2021.109960_b12) 2019; 3
References_xml – reference: Xiao, W., Mehdipour, N., Collin, A., Bin-Nun, A., Frazzoli, E., Tebbens, R., & Belta, C. (2021). Rule-based optimal control for autonomous driving. In
– reference: Hsu, S. C., Xu, X., & Ames, A. D. (2015). Control barrier function based quadratic programs with application to bipedal robotic walking. In
– volume: 3
  start-page: 96
  year: 2019
  end-page: 101
  ident: b12
  article-title: Control barrier functions for signal temporal logic tasks
  publication-title: IEEE Control Systems Letters
– year: 2002
  ident: b11
  article-title: Nonlinear systems
– reference: (pp. 4542–4548).
– reference: (pp. 6271–6278).
– reference: Panagou, D., Stipanovic, D. M., & Voulgaris, P. G. (2013). Multi-objective control for multi-agent systems using Lyapunov-like barrier functions. In
– year: 2021
  ident: b23
  article-title: Adaptive control barrier functions
  publication-title: IEEE Transactions on Automatic Control
– year: 2004
  ident: b5
  article-title: Convex optimization
– reference: Ames, A. D., Grizzle, J. W., & Tabuada, P. (2014). Control barrier function based quadratic programs with application to adaptive cruise control. In
– reference: (pp. 4454–4459).
– reference: Wu, G., & Sreenath, K. (2015). Safety-critical and constrained geometric control synthesis using control lyapunov and control barrier functions for systems evolving on manifolds. In
– year: 2018
  ident: b16
  article-title: Model predictive control: Theory, computation, and design
– reference: (pp. 6837–6842).
– reference: Ames, A. D., Galloway, K., & Grizzle, J. W. (2012). Control lyapunov functions and hybrid zero dynamics. In
– reference: Xiao, W., & Belta, C. (2019). Control barrier functions for systems with high relative degree. In
– reference: (pp. 143–154).
– volume: 3
  start-page: 323
  year: 2015
  end-page: 332
  ident: b8
  article-title: Torque saturation in bipedal robotic walking through control lyapunov function based quadratic programs
  publication-title: IEEE Access
– reference: Yang, G., Belta, C., & Tron, R. (2019). Self-triggered control for safety critical systems using control barrier functions. In
– volume: 52
  start-page: 1415
  year: 2007
  end-page: 1428
  ident: b15
  article-title: A framework for worst-case and stochastic safety verification using barrier certificates
  publication-title: IEEE Transactions on Automatic Control
– reference: Nguyen, Q., & Sreenath, K. (2016). Exponential control barrier functions for enforcing high relative-degree safety-critical constraints. In
– reference: .
– year: 2006
  ident: b1
  article-title: Nonlinear
– year: 2003
  ident: b7
  article-title: Dynamic programming: Models and applications
– reference: Wisniewski, R., & Sloth, C. (2013). Converse barrier certificate theorem. In
– reference: (pp. 1478–1483).
– reference: (pp. 2038–2044).
– year: 1969
  ident: b6
  article-title: Applied optimal control
– volume: 1
  start-page: 310
  year: 2017
  end-page: 315
  ident: b9
  article-title: Nonsmooth barrier functions with applications to multi-robot systems
  publication-title: IEEE Control Systems Letters
– reference: Wieland, P., & Allgower, F. (2007). Constructive safety using control barrier functions. In
– reference: (pp. 4713–4718).
– reference: (pp. 474–479).
– reference: (pp. 1896–1901).
– year: 2009
  ident: b4
  article-title: Viability theory
– volume: 45
  start-page: 918
  year: 2009
  end-page: 927
  ident: b17
  article-title: Barrier lyapunov functions for the control of output-constrained nonlinear systems
  publication-title: Automatica
– reference: (pp. 322–328).
– reference: Xiao, W., Belta, C., & Cassandras, C. G. (2020). Feasibility guided learning for constrained optimal control problems. In
– volume: 1
  start-page: 310
  issue: 2
  year: 2017
  ident: 10.1016/j.automatica.2021.109960_b9
  article-title: Nonsmooth barrier functions with applications to multi-robot systems
  publication-title: IEEE Control Systems Letters
  doi: 10.1109/LCSYS.2017.2710943
– volume: 52
  start-page: 1415
  issue: 8
  year: 2007
  ident: 10.1016/j.automatica.2021.109960_b15
  article-title: A framework for worst-case and stochastic safety verification using barrier certificates
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2007.902736
– year: 2018
  ident: 10.1016/j.automatica.2021.109960_b16
– ident: 10.1016/j.automatica.2021.109960_b22
  doi: 10.1109/CDC42340.2020.9303857
– volume: 45
  start-page: 918
  issue: 4
  year: 2009
  ident: 10.1016/j.automatica.2021.109960_b17
  article-title: Barrier lyapunov functions for the control of output-constrained nonlinear systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2008.11.017
– ident: 10.1016/j.automatica.2021.109960_b19
  doi: 10.1109/CDC.2013.6760627
– ident: 10.1016/j.automatica.2021.109960_b25
  doi: 10.23919/ACC.2019.8814657
– year: 2002
  ident: 10.1016/j.automatica.2021.109960_b11
– year: 2009
  ident: 10.1016/j.automatica.2021.109960_b4
– year: 2004
  ident: 10.1016/j.automatica.2021.109960_b5
– ident: 10.1016/j.automatica.2021.109960_b14
  doi: 10.1109/CDC.2013.6760091
– ident: 10.1016/j.automatica.2021.109960_b3
  doi: 10.1109/CDC.2014.7040372
– volume: 3
  start-page: 323
  year: 2015
  ident: 10.1016/j.automatica.2021.109960_b8
  article-title: Torque saturation in bipedal robotic walking through control lyapunov function based quadratic programs
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2015.2419630
– year: 2003
  ident: 10.1016/j.automatica.2021.109960_b7
– year: 1969
  ident: 10.1016/j.automatica.2021.109960_b6
– ident: 10.1016/j.automatica.2021.109960_b18
  doi: 10.3182/20070822-3-ZA-2920.00076
– ident: 10.1016/j.automatica.2021.109960_b20
  doi: 10.1109/ACC.2015.7171033
– ident: 10.1016/j.automatica.2021.109960_b21
  doi: 10.1109/CDC40024.2019.9029455
– ident: 10.1016/j.automatica.2021.109960_b10
  doi: 10.1109/ACC.2015.7172044
– volume: 3
  start-page: 96
  issue: 1
  year: 2019
  ident: 10.1016/j.automatica.2021.109960_b12
  article-title: Control barrier functions for signal temporal logic tasks
  publication-title: IEEE Control Systems Letters
  doi: 10.1109/LCSYS.2018.2853182
– ident: 10.1016/j.automatica.2021.109960_b24
  doi: 10.1145/3450267.3450542
– ident: 10.1016/j.automatica.2021.109960_b13
  doi: 10.1109/ACC.2016.7524935
– year: 2006
  ident: 10.1016/j.automatica.2021.109960_b1
– ident: 10.1016/j.automatica.2021.109960_b2
  doi: 10.1109/CDC.2012.6426229
– year: 2021
  ident: 10.1016/j.automatica.2021.109960_b23
  article-title: Adaptive control barrier functions
  publication-title: IEEE Transactions on Automatic Control
SSID ssj0004182
Score 2.625123
Snippet It has been shown that satisfying state and control constraints while optimizing quadratic costs subject to desired (sets of) state convergence for affine...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109960
SubjectTerms Control Barrier Function
Lyapunov methods
Optimal control
Safety-critical control
Title Sufficient conditions for feasibility of optimal control problems using Control Barrier Functions
URI https://dx.doi.org/10.1016/j.automatica.2021.109960
Volume 135
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEMeXohc9iE-sj7IHr7Em2SS7eKrFUhV70UJvYV-RijaltgcvfnZnNhtbQVDwmjBLmB1mZsN_f0PIWaqhTMVhEVilORxQChVwi9R9bUSmQ51wjheF7wdpf8huR8moQbr1XRiUVfrcX-V0l639k7b3Zns6HuMdXwwowaPQceMQu81YhlF-_rGUebCQV8RwR9wU3Kt5Ko2XXMxLR0ZFAlEUIltJOFjlDyVqpez0tsmW7xdpp_qkHdKwk12yuUIR3CPyYeE4EFA-KJxuTSXCotCN0sJKL399p2VBS8gPr7Ca16dTP03mjaL6_Yl2_eMrOcM5drQHNc-ttU-GvevHbj_wkxMCjUCvQIlIFTZUaRxlBonsyljNjBVZkih4k2aWWxPDdmQmYamUhYxtxA0TTCZWyviArE3KiT0k1IJnFbRZxUXMWWGgO4B6JpWQhjGdct4kWe2sXHusOE63eMlr_dhzvnRzjm7OKzc3SfhlOa3QGn-wuaz3I_8WJjlUgF-tj_5lfUw2Irz74P6_nJC1-WxhT6EjmauWC7kWWe_c3PUHnwQr5Js
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEMeH2h7Ug_jE-tyD11CTbJINnmqxtPZxsYXeln1FKtqU2h789u5uNraCoOA1YZYwu8zMhv_8BuAmFjpNhX7mKS6IvqBk3CPKUPeFTBPhi4gQ0yg8GMadMX6cRJMKtMpeGCOrdLG_iOk2WrsnDefNxnw6NT2-5kClJPAtNy7egpqhU0VVqDW7vc5w3R7pkwIabqGbKXGCnkLmxVbL3MJRDYQo8A1eKbW8yh-y1Ebmae_DnisZUbP4qgOoqNkh7G6ABI-APa0sCkJnEKQvuLLQYSFdkKJMMaeA_UB5hnIdIt70ak6ijtxAmXdkBPDPqOUe37OFGWWH2jrt2bWOYdx-GLU6nhue4AnD9PJ4GvBM-TwOg0QaKDuXSmCp0iSKuH4TJ4ooGeodSWSEY8YyFqqASJxiFinGwhOozvKZOgWktHO5rrSy25DgTOoCQac0xlMmMRYxIXVISmdR4cjiZsDFKy0lZC907WZq3EwLN9fB_7KcF3SNP9jclftBv50UqpPAr9Zn_7K-hu3OaNCn_e6wdw47gWmFsL9jLqC6XKzUpS5QlvzKHcBP17LnTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sufficient+conditions+for+feasibility+of+optimal+control+problems+using+Control+Barrier+Functions&rft.jtitle=Automatica+%28Oxford%29&rft.au=Xiao%2C+Wei&rft.au=Belta%2C+Calin+A.&rft.au=Cassandras%2C+Christos+G.&rft.date=2022-01-01&rft.pub=Elsevier+Ltd&rft.issn=0005-1098&rft.eissn=1873-2836&rft.volume=135&rft_id=info:doi/10.1016%2Fj.automatica.2021.109960&rft.externalDocID=S0005109821004866
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon