Sufficient conditions for feasibility of optimal control problems using Control Barrier Functions
It has been shown that satisfying state and control constraints while optimizing quadratic costs subject to desired (sets of) state convergence for affine control systems can be reduced to a sequence of quadratic programs (QPs) by using Control Barrier Functions (CBFs) and Control Lyapunov Functions...
Saved in:
Published in | Automatica (Oxford) Vol. 135; p. 109960 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | It has been shown that satisfying state and control constraints while optimizing quadratic costs subject to desired (sets of) state convergence for affine control systems can be reduced to a sequence of quadratic programs (QPs) by using Control Barrier Functions (CBFs) and Control Lyapunov Functions (CLFs). One of the main challenges in this approach is ensuring the feasibility of these QPs, especially under tight control bounds and safety constraints of high relative degree. The main contribution of this paper is to provide sufficient conditions for guaranteed feasibility. The sufficient conditions are captured by a single constraint that is enforced by a CBF, which is added to the QPs such that their feasibility is always guaranteed. The additional constraint is designed to be always compatible with the existing constraints, therefore, it cannot make a feasible set of constraints infeasible — it can only increase the overall feasibility. We illustrate the effectiveness of the proposed approach on an adaptive cruise control problem. |
---|---|
AbstractList | It has been shown that satisfying state and control constraints while optimizing quadratic costs subject to desired (sets of) state convergence for affine control systems can be reduced to a sequence of quadratic programs (QPs) by using Control Barrier Functions (CBFs) and Control Lyapunov Functions (CLFs). One of the main challenges in this approach is ensuring the feasibility of these QPs, especially under tight control bounds and safety constraints of high relative degree. The main contribution of this paper is to provide sufficient conditions for guaranteed feasibility. The sufficient conditions are captured by a single constraint that is enforced by a CBF, which is added to the QPs such that their feasibility is always guaranteed. The additional constraint is designed to be always compatible with the existing constraints, therefore, it cannot make a feasible set of constraints infeasible — it can only increase the overall feasibility. We illustrate the effectiveness of the proposed approach on an adaptive cruise control problem. |
ArticleNumber | 109960 |
Author | Cassandras, Christos G. Belta, Calin A. Xiao, Wei |
Author_xml | – sequence: 1 givenname: Wei surname: Xiao fullname: Xiao, Wei email: xiaowei@bu.edu – sequence: 2 givenname: Calin A. surname: Belta fullname: Belta, Calin A. email: cbelta@bu.edu – sequence: 3 givenname: Christos G. surname: Cassandras fullname: Cassandras, Christos G. email: cgc@bu.edu |
BookMark | eNqNkM9KAzEQh4NUsK2-Q15ga5L9fxFssSoUPKjnMJtMJGW7KUkq9O3N2oLgRS8Jmcl8zO-bkcngBiSEcrbgjFe32wUcottBtAoWggmeym1bsQsy5U2dZ6LJqwmZMsbKLHWaKzILYZueBW_ElMDrwRirLA6RKjdoG60bAjXOU4MQbGd7G4_UGer20e6gH39F73q6967rcRfoIdjhg67O5SV4b9HT9WFQ36xrcmmgD3hzvufkff3wtnrKNi-Pz6v7TabSiizrWtEZ5F2Vi1qLdHYaVaGxrcuyS52qxgZ1rtu61mVRARjIUTS6aAsoESCfk7sTV3kXgkcjlY0wrhA92F5yJkdhcit_hMlRmDwJS4DmF2DvU2J__M_o8jSKKeBnii_DqFShth5VlNrZvyFfXi-SKA |
CitedBy_id | crossref_primary_10_1016_j_automatica_2024_111921 crossref_primary_10_1109_TAC_2022_3202088 crossref_primary_10_1109_TASE_2024_3377131 crossref_primary_10_1016_j_mbs_2024_109142 crossref_primary_10_1109_TNSE_2024_3401592 crossref_primary_10_1002_rnc_7141 crossref_primary_10_1016_j_ifacol_2023_10_1818 crossref_primary_10_1109_LRA_2023_3322088 crossref_primary_10_1007_s11424_021_1230_x crossref_primary_10_1016_j_automatica_2023_111238 crossref_primary_10_1016_j_automatica_2024_111530 crossref_primary_10_1109_TAC_2024_3383069 crossref_primary_10_3390_electronics12214549 crossref_primary_10_1016_j_jfranklin_2024_106906 crossref_primary_10_1016_j_arcontrol_2024_100944 crossref_primary_10_1109_TRO_2023_3249564 crossref_primary_10_1109_JIOT_2024_3389458 crossref_primary_10_1016_j_isatra_2024_03_010 crossref_primary_10_1016_j_neunet_2024_106968 crossref_primary_10_1109_TCNS_2024_3487612 crossref_primary_10_1007_s43684_024_00081_x crossref_primary_10_1109_TIE_2023_3296810 crossref_primary_10_1109_TCNS_2022_3203350 crossref_primary_10_1080_00207721_2024_2304665 crossref_primary_10_1002_rnc_6585 |
Cites_doi | 10.1109/LCSYS.2017.2710943 10.1109/TAC.2007.902736 10.1109/CDC42340.2020.9303857 10.1016/j.automatica.2008.11.017 10.1109/CDC.2013.6760627 10.23919/ACC.2019.8814657 10.1109/CDC.2013.6760091 10.1109/CDC.2014.7040372 10.1109/ACCESS.2015.2419630 10.3182/20070822-3-ZA-2920.00076 10.1109/ACC.2015.7171033 10.1109/CDC40024.2019.9029455 10.1109/ACC.2015.7172044 10.1109/LCSYS.2018.2853182 10.1145/3450267.3450542 10.1109/ACC.2016.7524935 10.1109/CDC.2012.6426229 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.automatica.2021.109960 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-2836 |
ExternalDocumentID | 10_1016_j_automatica_2021_109960 S0005109821004866 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 23N 3R3 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABDEX ABFNM ABFRF ABJNI ABMAC ABUCO ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ADBBV ADEZE ADIYS ADMUD ADTZH AEBSH AECPX AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHPGS AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA K-O KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SSB SSD SST SSZ T5K T9H TAE TN5 VH1 WH7 WUQ X6Y XFK XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c2830-b92bfe1b6327d2632bdec4de9755bbfe67e8ed3d977d546aafa3e28d494a5eaa3 |
IEDL.DBID | .~1 |
ISSN | 0005-1098 |
IngestDate | Tue Jul 01 00:44:35 EDT 2025 Thu Apr 24 23:07:34 EDT 2025 Fri Feb 23 02:42:25 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Control Barrier Function Safety-critical control Optimal control Lyapunov methods |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2830-b92bfe1b6327d2632bdec4de9755bbfe67e8ed3d977d546aafa3e28d494a5eaa3 |
OpenAccessLink | https://www.sciencedirect.com/science/article/am/pii/S0005109821004866?via%3Dihub |
ParticipantIDs | crossref_citationtrail_10_1016_j_automatica_2021_109960 crossref_primary_10_1016_j_automatica_2021_109960 elsevier_sciencedirect_doi_10_1016_j_automatica_2021_109960 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2022 2022-01-00 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: January 2022 |
PublicationDecade | 2020 |
PublicationTitle | Automatica (Oxford) |
PublicationYear | 2022 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Prajna, Jadbabaie, Pappas (b15) 2007; 52 Ames, A. D., Galloway, K., & Grizzle, J. W. (2012). Control lyapunov functions and hybrid zero dynamics. In (pp. 474–479). Panagou, D., Stipanovic, D. M., & Voulgaris, P. G. (2013). Multi-objective control for multi-agent systems using Lyapunov-like barrier functions. In Boyd, Vandenberghe (b5) 2004 (pp. 4454–4459). (pp. 6837–6842). Galloway, Sreenath, Ames, Grizzle (b8) 2015; 3 Khalil (b11) 2002 Wu, G., & Sreenath, K. (2015). Safety-critical and constrained geometric control synthesis using control lyapunov and control barrier functions for systems evolving on manifolds. In Xiao, W., Mehdipour, N., Collin, A., Bin-Nun, A., Frazzoli, E., Tebbens, R., & Belta, C. (2021). Rule-based optimal control for autonomous driving. In (pp. 6271–6278). Bryson, Ho (b6) 1969 Ames, A. D., Grizzle, J. W., & Tabuada, P. (2014). Control barrier function based quadratic programs with application to adaptive cruise control. In (pp. 4713–4718). (pp. 4542–4548). Denardo (b7) 2003 (pp. 143–154). Rawlings, Mayne, Diehl (b16) 2018 Xiao, W., & Belta, C. (2019). Control barrier functions for systems with high relative degree. In Hsu, S. C., Xu, X., & Ames, A. D. (2015). Control barrier function based quadratic programs with application to bipedal robotic walking. In Tee, Ge, Tay (b17) 2009; 45 Wieland, P., & Allgower, F. (2007). Constructive safety using control barrier functions. In Wisniewski, R., & Sloth, C. (2013). Converse barrier certificate theorem. In Xiao, W., Belta, C., & Cassandras, C. G. (2020). Feasibility guided learning for constrained optimal control problems. In (pp. 2038–2044). Aubin (b4) 2009 Glotfelter, Cortes, Egerstedt (b9) 2017; 1 Lindemann, Dimarogonas (b12) 2019; 3 . (pp. 1478–1483). Xiao, Belta, Cassandras (b23) 2021 Abu-Khalaf, Huang, Lewis (b1) 2006 Yang, G., Belta, C., & Tron, R. (2019). Self-triggered control for safety critical systems using control barrier functions. In (pp. 322–328). (pp. 1896–1901). Nguyen, Q., & Sreenath, K. (2016). Exponential control barrier functions for enforcing high relative-degree safety-critical constraints. In Aubin (10.1016/j.automatica.2021.109960_b4) 2009 Abu-Khalaf (10.1016/j.automatica.2021.109960_b1) 2006 Galloway (10.1016/j.automatica.2021.109960_b8) 2015; 3 Tee (10.1016/j.automatica.2021.109960_b17) 2009; 45 10.1016/j.automatica.2021.109960_b25 10.1016/j.automatica.2021.109960_b3 10.1016/j.automatica.2021.109960_b2 Boyd (10.1016/j.automatica.2021.109960_b5) 2004 10.1016/j.automatica.2021.109960_b20 10.1016/j.automatica.2021.109960_b24 10.1016/j.automatica.2021.109960_b21 Bryson (10.1016/j.automatica.2021.109960_b6) 1969 10.1016/j.automatica.2021.109960_b22 Denardo (10.1016/j.automatica.2021.109960_b7) 2003 10.1016/j.automatica.2021.109960_b14 Rawlings (10.1016/j.automatica.2021.109960_b16) 2018 10.1016/j.automatica.2021.109960_b18 10.1016/j.automatica.2021.109960_b19 Xiao (10.1016/j.automatica.2021.109960_b23) 2021 Prajna (10.1016/j.automatica.2021.109960_b15) 2007; 52 10.1016/j.automatica.2021.109960_b13 10.1016/j.automatica.2021.109960_b10 Glotfelter (10.1016/j.automatica.2021.109960_b9) 2017; 1 Khalil (10.1016/j.automatica.2021.109960_b11) 2002 Lindemann (10.1016/j.automatica.2021.109960_b12) 2019; 3 |
References_xml | – reference: Xiao, W., Mehdipour, N., Collin, A., Bin-Nun, A., Frazzoli, E., Tebbens, R., & Belta, C. (2021). Rule-based optimal control for autonomous driving. In – reference: Hsu, S. C., Xu, X., & Ames, A. D. (2015). Control barrier function based quadratic programs with application to bipedal robotic walking. In – volume: 3 start-page: 96 year: 2019 end-page: 101 ident: b12 article-title: Control barrier functions for signal temporal logic tasks publication-title: IEEE Control Systems Letters – year: 2002 ident: b11 article-title: Nonlinear systems – reference: (pp. 4542–4548). – reference: (pp. 6271–6278). – reference: Panagou, D., Stipanovic, D. M., & Voulgaris, P. G. (2013). Multi-objective control for multi-agent systems using Lyapunov-like barrier functions. In – year: 2021 ident: b23 article-title: Adaptive control barrier functions publication-title: IEEE Transactions on Automatic Control – year: 2004 ident: b5 article-title: Convex optimization – reference: Ames, A. D., Grizzle, J. W., & Tabuada, P. (2014). Control barrier function based quadratic programs with application to adaptive cruise control. In – reference: (pp. 4454–4459). – reference: Wu, G., & Sreenath, K. (2015). Safety-critical and constrained geometric control synthesis using control lyapunov and control barrier functions for systems evolving on manifolds. In – year: 2018 ident: b16 article-title: Model predictive control: Theory, computation, and design – reference: (pp. 6837–6842). – reference: Ames, A. D., Galloway, K., & Grizzle, J. W. (2012). Control lyapunov functions and hybrid zero dynamics. In – reference: Xiao, W., & Belta, C. (2019). Control barrier functions for systems with high relative degree. In – reference: (pp. 143–154). – volume: 3 start-page: 323 year: 2015 end-page: 332 ident: b8 article-title: Torque saturation in bipedal robotic walking through control lyapunov function based quadratic programs publication-title: IEEE Access – reference: Yang, G., Belta, C., & Tron, R. (2019). Self-triggered control for safety critical systems using control barrier functions. In – volume: 52 start-page: 1415 year: 2007 end-page: 1428 ident: b15 article-title: A framework for worst-case and stochastic safety verification using barrier certificates publication-title: IEEE Transactions on Automatic Control – reference: Nguyen, Q., & Sreenath, K. (2016). Exponential control barrier functions for enforcing high relative-degree safety-critical constraints. In – reference: . – year: 2006 ident: b1 article-title: Nonlinear – year: 2003 ident: b7 article-title: Dynamic programming: Models and applications – reference: Wisniewski, R., & Sloth, C. (2013). Converse barrier certificate theorem. In – reference: (pp. 1478–1483). – reference: (pp. 2038–2044). – year: 1969 ident: b6 article-title: Applied optimal control – volume: 1 start-page: 310 year: 2017 end-page: 315 ident: b9 article-title: Nonsmooth barrier functions with applications to multi-robot systems publication-title: IEEE Control Systems Letters – reference: Wieland, P., & Allgower, F. (2007). Constructive safety using control barrier functions. In – reference: (pp. 4713–4718). – reference: (pp. 474–479). – reference: (pp. 1896–1901). – year: 2009 ident: b4 article-title: Viability theory – volume: 45 start-page: 918 year: 2009 end-page: 927 ident: b17 article-title: Barrier lyapunov functions for the control of output-constrained nonlinear systems publication-title: Automatica – reference: (pp. 322–328). – reference: Xiao, W., Belta, C., & Cassandras, C. G. (2020). Feasibility guided learning for constrained optimal control problems. In – volume: 1 start-page: 310 issue: 2 year: 2017 ident: 10.1016/j.automatica.2021.109960_b9 article-title: Nonsmooth barrier functions with applications to multi-robot systems publication-title: IEEE Control Systems Letters doi: 10.1109/LCSYS.2017.2710943 – volume: 52 start-page: 1415 issue: 8 year: 2007 ident: 10.1016/j.automatica.2021.109960_b15 article-title: A framework for worst-case and stochastic safety verification using barrier certificates publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2007.902736 – year: 2018 ident: 10.1016/j.automatica.2021.109960_b16 – ident: 10.1016/j.automatica.2021.109960_b22 doi: 10.1109/CDC42340.2020.9303857 – volume: 45 start-page: 918 issue: 4 year: 2009 ident: 10.1016/j.automatica.2021.109960_b17 article-title: Barrier lyapunov functions for the control of output-constrained nonlinear systems publication-title: Automatica doi: 10.1016/j.automatica.2008.11.017 – ident: 10.1016/j.automatica.2021.109960_b19 doi: 10.1109/CDC.2013.6760627 – ident: 10.1016/j.automatica.2021.109960_b25 doi: 10.23919/ACC.2019.8814657 – year: 2002 ident: 10.1016/j.automatica.2021.109960_b11 – year: 2009 ident: 10.1016/j.automatica.2021.109960_b4 – year: 2004 ident: 10.1016/j.automatica.2021.109960_b5 – ident: 10.1016/j.automatica.2021.109960_b14 doi: 10.1109/CDC.2013.6760091 – ident: 10.1016/j.automatica.2021.109960_b3 doi: 10.1109/CDC.2014.7040372 – volume: 3 start-page: 323 year: 2015 ident: 10.1016/j.automatica.2021.109960_b8 article-title: Torque saturation in bipedal robotic walking through control lyapunov function based quadratic programs publication-title: IEEE Access doi: 10.1109/ACCESS.2015.2419630 – year: 2003 ident: 10.1016/j.automatica.2021.109960_b7 – year: 1969 ident: 10.1016/j.automatica.2021.109960_b6 – ident: 10.1016/j.automatica.2021.109960_b18 doi: 10.3182/20070822-3-ZA-2920.00076 – ident: 10.1016/j.automatica.2021.109960_b20 doi: 10.1109/ACC.2015.7171033 – ident: 10.1016/j.automatica.2021.109960_b21 doi: 10.1109/CDC40024.2019.9029455 – ident: 10.1016/j.automatica.2021.109960_b10 doi: 10.1109/ACC.2015.7172044 – volume: 3 start-page: 96 issue: 1 year: 2019 ident: 10.1016/j.automatica.2021.109960_b12 article-title: Control barrier functions for signal temporal logic tasks publication-title: IEEE Control Systems Letters doi: 10.1109/LCSYS.2018.2853182 – ident: 10.1016/j.automatica.2021.109960_b24 doi: 10.1145/3450267.3450542 – ident: 10.1016/j.automatica.2021.109960_b13 doi: 10.1109/ACC.2016.7524935 – year: 2006 ident: 10.1016/j.automatica.2021.109960_b1 – ident: 10.1016/j.automatica.2021.109960_b2 doi: 10.1109/CDC.2012.6426229 – year: 2021 ident: 10.1016/j.automatica.2021.109960_b23 article-title: Adaptive control barrier functions publication-title: IEEE Transactions on Automatic Control |
SSID | ssj0004182 |
Score | 2.625123 |
Snippet | It has been shown that satisfying state and control constraints while optimizing quadratic costs subject to desired (sets of) state convergence for affine... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 109960 |
SubjectTerms | Control Barrier Function Lyapunov methods Optimal control Safety-critical control |
Title | Sufficient conditions for feasibility of optimal control problems using Control Barrier Functions |
URI | https://dx.doi.org/10.1016/j.automatica.2021.109960 |
Volume | 135 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEMeXohc9iE-sj7IHr7Em2SS7eKrFUhV70UJvYV-RijaltgcvfnZnNhtbQVDwmjBLmB1mZsN_f0PIWaqhTMVhEVilORxQChVwi9R9bUSmQ51wjheF7wdpf8huR8moQbr1XRiUVfrcX-V0l639k7b3Zns6HuMdXwwowaPQceMQu81YhlF-_rGUebCQV8RwR9wU3Kt5Ko2XXMxLR0ZFAlEUIltJOFjlDyVqpez0tsmW7xdpp_qkHdKwk12yuUIR3CPyYeE4EFA-KJxuTSXCotCN0sJKL399p2VBS8gPr7Ca16dTP03mjaL6_Yl2_eMrOcM5drQHNc-ttU-GvevHbj_wkxMCjUCvQIlIFTZUaRxlBonsyljNjBVZkih4k2aWWxPDdmQmYamUhYxtxA0TTCZWyviArE3KiT0k1IJnFbRZxUXMWWGgO4B6JpWQhjGdct4kWe2sXHusOE63eMlr_dhzvnRzjm7OKzc3SfhlOa3QGn-wuaz3I_8WJjlUgF-tj_5lfUw2Irz74P6_nJC1-WxhT6EjmauWC7kWWe_c3PUHnwQr5Js |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1LS8NAEMeH2h7Ug_jE-tyD11CTbJINnmqxtPZxsYXeln1FKtqU2h789u5uNraCoOA1YZYwu8zMhv_8BuAmFjpNhX7mKS6IvqBk3CPKUPeFTBPhi4gQ0yg8GMadMX6cRJMKtMpeGCOrdLG_iOk2WrsnDefNxnw6NT2-5kClJPAtNy7egpqhU0VVqDW7vc5w3R7pkwIabqGbKXGCnkLmxVbL3MJRDYQo8A1eKbW8yh-y1Ebmae_DnisZUbP4qgOoqNkh7G6ABI-APa0sCkJnEKQvuLLQYSFdkKJMMaeA_UB5hnIdIt70ak6ijtxAmXdkBPDPqOUe37OFGWWH2jrt2bWOYdx-GLU6nhue4AnD9PJ4GvBM-TwOg0QaKDuXSmCp0iSKuH4TJ4ooGeodSWSEY8YyFqqASJxiFinGwhOozvKZOgWktHO5rrSy25DgTOoCQac0xlMmMRYxIXVISmdR4cjiZsDFKy0lZC907WZq3EwLN9fB_7KcF3SNP9jclftBv50UqpPAr9Zn_7K-hu3OaNCn_e6wdw47gWmFsL9jLqC6XKzUpS5QlvzKHcBP17LnTA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sufficient+conditions+for+feasibility+of+optimal+control+problems+using+Control+Barrier+Functions&rft.jtitle=Automatica+%28Oxford%29&rft.au=Xiao%2C+Wei&rft.au=Belta%2C+Calin+A.&rft.au=Cassandras%2C+Christos+G.&rft.date=2022-01-01&rft.pub=Elsevier+Ltd&rft.issn=0005-1098&rft.eissn=1873-2836&rft.volume=135&rft_id=info:doi/10.1016%2Fj.automatica.2021.109960&rft.externalDocID=S0005109821004866 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon |