The multimodality cell segmentation challenge: toward universal solutions

Cell segmentation is a critical step for quantitative single-cell analysis in microscopy images. Existing cell segmentation methods are often tailored to specific modalities or require manual interventions to specify hyper-parameters in different experimental settings. Here, we present a multimodali...

Full description

Saved in:
Bibliographic Details
Published inNature methods Vol. 21; no. 6; pp. 1103 - 1113
Main Authors Ma, Jun, Xie, Ronald, Ayyadhury, Shamini, Ge, Cheng, Gupta, Anubha, Gupta, Ritu, Gu, Song, Zhang, Yao, Lee, Gihun, Kim, Joonkee, Lou, Wei, Li, Haofeng, Upschulte, Eric, Dickscheid, Timo, de Almeida, José Guilherme, Wang, Yixin, Han, Lin, Yang, Xin, Labagnara, Marco, Gligorovski, Vojislav, Scheder, Maxime, Rahi, Sahand Jamal, Kempster, Carly, Pollitt, Alice, Espinosa, Leon, Mignot, Tâm, Middeke, Jan Moritz, Eckardt, Jan-Niklas, Li, Wangkai, Li, Zhaoyang, Cai, Xiaochen, Bai, Bizhe, Greenwald, Noah F, Van Valen, David, Weisbart, Erin, Cimini, Beth A, Cheung, Trevor, Brück, Oscar, Bader, Gary D, Wang, Bo
Format Journal Article
LanguageEnglish
Published United States Nature Publishing Group 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Cell segmentation is a critical step for quantitative single-cell analysis in microscopy images. Existing cell segmentation methods are often tailored to specific modalities or require manual interventions to specify hyper-parameters in different experimental settings. Here, we present a multimodality cell segmentation benchmark, comprising more than 1,500 labeled images derived from more than 50 diverse biological experiments. The top participants developed a Transformer-based deep-learning algorithm that not only exceeds existing methods but can also be applied to diverse microscopy images across imaging platforms and tissue types without manual parameter adjustments. This benchmark and the improved algorithm offer promising avenues for more accurate and versatile cell analysis in microscopy imaging.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1548-7091
1548-7105
1548-7105
DOI:10.1038/s41592-024-02233-6