Simulation study of InAlN/GaN high-electron mobility transistor with AlInN back barrier

In this work, we use a 3-nm-thick Al0.64In0.36N back-barrier layer in In0.17Al0.83N/GaN high-electron mobility transistor (HEMT) to enhance electron confinement. Based on two-dimensional device simulations, the influences of Al0.64In0.36N back-barrier on the direct-current (DC) and radio-frequency (...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 26; no. 10; pp. 433 - 437
Main Author 韩铁成 赵红东 杨磊 王杨
Format Journal Article
LanguageEnglish
Published 01.10.2017
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/26/10/107301

Cover

More Information
Summary:In this work, we use a 3-nm-thick Al0.64In0.36N back-barrier layer in In0.17Al0.83N/GaN high-electron mobility transistor (HEMT) to enhance electron confinement. Based on two-dimensional device simulations, the influences of Al0.64In0.36N back-barrier on the direct-current (DC) and radio-frequency (RF) characteristics of InAlN/GaN HEMT are investigated, theoretically. It is shown that an effective conduction band discontinuity of approximately 0.5 eV is created by the 3-nm-thick Al0.64In0.36N back-barrier and no parasitic electron channel is formed. Comparing with the conventional InAlN/GaN HEMT, the electron confinement of the back-barrier HEMT is significantly improved, which allows a good immunity to short-channel effect (SCE) for gate length decreasing down to 60 nm (9-nm top barrier). For a 70-nm gate length, the peak current gain cut-off frequency (fT) and power gain cut-off frequency (fmax) of the back-barrier HEMT are 172 GHz and 217 GHz, respectively, which are higher than those of the conventional HEMT with the same gate length.
Bibliography:InAlN/GaN HEMT, back barrier, electron confinement, short-channel effect (SCE)
In this work, we use a 3-nm-thick Al0.64In0.36N back-barrier layer in In0.17Al0.83N/GaN high-electron mobility transistor (HEMT) to enhance electron confinement. Based on two-dimensional device simulations, the influences of Al0.64In0.36N back-barrier on the direct-current (DC) and radio-frequency (RF) characteristics of InAlN/GaN HEMT are investigated, theoretically. It is shown that an effective conduction band discontinuity of approximately 0.5 eV is created by the 3-nm-thick Al0.64In0.36N back-barrier and no parasitic electron channel is formed. Comparing with the conventional InAlN/GaN HEMT, the electron confinement of the back-barrier HEMT is significantly improved, which allows a good immunity to short-channel effect (SCE) for gate length decreasing down to 60 nm (9-nm top barrier). For a 70-nm gate length, the peak current gain cut-off frequency (fT) and power gain cut-off frequency (fmax) of the back-barrier HEMT are 172 GHz and 217 GHz, respectively, which are higher than those of the conventional HEMT with the same gate length.
Tie-Cheng Han, Hong-Dong Zhao, Lei Yang, Yang Wang(School of Electronic and Information Engineering, Hebei University of Technology, Tianjin 300401, China)
11-5639/O4
ISSN:1674-1056
2058-3834
DOI:10.1088/1674-1056/26/10/107301