Structure, reactivity and catalytic properties of manganese-hydride amidate complexes

The high efficiency of widely applied Noyori-type hydrogenation catalysts arises from the N–H moiety coordinated to a metal centre, which stabilizes rate-determining transition states through hydrogen-bonding interactions. It was proposed that a higher efficiency could be achieved by substituting an...

Full description

Saved in:
Bibliographic Details
Published inNature chemistry Vol. 14; no. 11; pp. 1233 - 1241
Main Authors Wang, Yujie, Liu, Shihan, Yang, Haobo, Li, Hengxu, Lan, Yu, Liu, Qiang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.11.2022
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The high efficiency of widely applied Noyori-type hydrogenation catalysts arises from the N–H moiety coordinated to a metal centre, which stabilizes rate-determining transition states through hydrogen-bonding interactions. It was proposed that a higher efficiency could be achieved by substituting an N–M′ group (M′ = alkali metals) for the N–H moiety using a large excess of metal alkoxides (M′OR); however, such a metal-hydride amidate intermediate has not yet been isolated. Here we present the synthesis, isolation and reactivity of a metal-hydride amidate complex (HMn–NLi). Kinetic studies show that the rate of hydride transfer from HMn–NLi to a ketone is 24-fold higher than that of the corresponding amino metal-hydride complex (HMn–NH). Moreover, the hydrogenation of N -alkyl-substituted aldimines was realized using HMn–NLi as the active catalyst, whereas HMn–NH is much less effective. These results highlight the superiority of M/NM′ bifunctional catalysis over the classic M/NH bifunctional catalysis for hydrogenation reactions. Noyori-type hydrogenation catalysts consist of an N–H moiety coordinated to a metal centre. Now, a metal-hydride amidate complex (HMn–NLi) has been isolated and found to have superior reactivity and catalytic performance compared with the corresponding HMn–NH complex, highlighting the superiority of M/NM′ bifunctional catalysis over the classic M/NH bifunctional catalysis for hydrogenation reactions.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1755-4330
1755-4349
1755-4349
DOI:10.1038/s41557-022-01036-6