Finding search directions in quasi-Newton methods for minimizing a quadratic function subject to uncertainty
We investigate quasi-Newton methods for minimizing a strongly convex quadratic function which is subject to errors in the evaluation of the gradients. In particular, we focus on computing search directions for quasi-Newton methods that all give identical behavior in exact arithmetic, generating mini...
Saved in:
Published in | Computational optimization and applications Vol. 91; no. 1; pp. 145 - 171 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We investigate quasi-Newton methods for minimizing a strongly convex quadratic function which is subject to errors in the evaluation of the gradients. In particular, we focus on computing search directions for quasi-Newton methods that all give identical behavior in exact arithmetic, generating minimizers of Krylov subspaces of increasing dimensions, thereby having finite termination. The BFGS quasi-Newton method may be seen as an ideal method in exact arithmetic and is empirically known to behave very well on a quadratic problem subject to small errors. We investigate large-error scenarios, in which the expected behavior is not so clear. We consider memoryless methods that are less expensive than the BFGS method, in that they generate
low-rank quasi-Newton matrices
that differ from the identity by a symmetric matrix of rank two. In addition, a more advanced model for generating the search directions is proposed, based on solving a chance-constrained optimization problem. Our numerical results indicate that for large errors, such a low-rank memoryless quasi-Newton method may perform better than a BFGS method. In addition, the results indicate a potential edge by including the chance-constrained model in the memoryless quasi-Newton method. |
---|---|
AbstractList | We investigate quasi-Newton methods for minimizing a strongly convex quadratic function which is subject to errors in the evaluation of the gradients. In particular, we focus on computing search directions for quasi-Newton methods that all give identical behavior in exact arithmetic, generating minimizers of Krylov subspaces of increasing dimensions, thereby having finite termination. The BFGS quasi-Newton method may be seen as an ideal method in exact arithmetic and is empirically known to behave very well on a quadratic problem subject to small errors. We investigate large-error scenarios, in which the expected behavior is not so clear. We consider memoryless methods that are less expensive than the BFGS method, in that they generate low-rank quasi-Newton matrices that differ from the identity by a symmetric matrix of rank two. In addition, a more advanced model for generating the search directions is proposed, based on solving a chance-constrained optimization problem. Our numerical results indicate that for large errors, such a low-rank memoryless quasi-Newton method may perform better than a BFGS method. In addition, the results indicate a potential edge by including the chance-constrained model in the memoryless quasi-Newton method. We investigate quasi-Newton methods for minimizing a strongly convex quadratic function which is subject to errors in the evaluation of the gradients. In particular, we focus on computing search directions for quasi-Newton methods that all give identical behavior in exact arithmetic, generating minimizers of Krylov subspaces of increasing dimensions, thereby having finite termination. The BFGS quasi-Newton method may be seen as an ideal method in exact arithmetic and is empirically known to behave very well on a quadratic problem subject to small errors. We investigate large-error scenarios, in which the expected behavior is not so clear. We consider memoryless methods that are less expensive than the BFGS method, in that they generate low-rank quasi-Newton matrices that differ from the identity by a symmetric matrix of rank two. In addition, a more advanced model for generating the search directions is proposed, based on solving a chance-constrained optimization problem. Our numerical results indicate that for large errors, such a low-rank memoryless quasi-Newton method may perform better than a BFGS method. In addition, the results indicate a potential edge by including the chance-constrained model in the memoryless quasi-Newton method. |
Author | Forsgren, Anders Ek, David Canessa, Gianpiero Peng, Shen |
Author_xml | – sequence: 1 givenname: Shen surname: Peng fullname: Peng, Shen organization: School of Mathematics and Statistics, Xidian University, Optimization and Systems Theory, Department of Mathematics, KTH Royal Institute of Technology – sequence: 2 givenname: Gianpiero surname: Canessa fullname: Canessa, Gianpiero organization: Optimization and Systems Theory, Department of Mathematics, KTH Royal Institute of Technology – sequence: 3 givenname: David surname: Ek fullname: Ek, David organization: Optimization and Systems Theory, Department of Mathematics, KTH Royal Institute of Technology – sequence: 4 givenname: Anders orcidid: 0000-0002-6252-7815 surname: Forsgren fullname: Forsgren, Anders email: andersf@kth.se organization: Optimization and Systems Theory, Department of Mathematics, KTH Royal Institute of Technology |
BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-360747$$DView record from Swedish Publication Index |
BookMark | eNp9kcFuGyEURVGUSrHT_EBWSF3TPmAGZpZR2qSVonaTZIvw8MbGicEGRpH79cV21O66Qno65-qKOyfnIQYk5JrDZw6gv2QObdczEC0DUIqz5ozMeKslE13fnJMZ9EIxBSAvyDznNQD0WooZeb3zwfmwpBltGlbU-YRD8TFk6gPdTTZ79hPfSgx0g2UVXaZjTHTjg9_43wfRHiiXbPEDHadwlGmeFuuaQ0uk9YSpWB_K_iP5MNrXjFfv7yV5uvv2ePudPfy6_3F788AG0YnCrBMKe6ndQo-1fWcdR5SAnUMYO9f2otFOtYPjCgUuWteKgcsGGuB87NHKS8JOufkNt9PCbJPf2LQ30Xrz1T_fmJiW5qWsjFSgG135Tyd-m-JuwlzMOk4p1IpG8g60OvxxpcSJGlLMOeH4N5eDORDmtIKpK5jjCqapknyvUuGwxPQv-j_WH_CNjnw |
Cites_doi | 10.1137/1.9781611973433 10.1007/s101070100263 10.1109/GlobalSIP.2013.6737088 10.1007/s10957-009-9523-6 10.1137/20M1373190 10.1137/070702928 10.1137/140954362 10.1007/s10589-017-9940-7 10.1007/s10589-022-00448-x 10.1007/BF01589116 10.1007/1-84628-095-8_1 10.1007/s10589-021-00277-4 10.1007/BFb0121009 10.1137/0716059 10.1137/1.9780898718003 10.1007/s10107-018-1295-z 10.1007/s10107-015-0942-x 10.1007/s10589-014-9687-3 10.1137/19M1240794 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 Copyright Springer Nature B.V. May 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright Springer Nature B.V. May 2025 |
DBID | C6C AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D ADTPV AFDQA AOWAS D8T D8V ZZAVC |
DOI | 10.1007/s10589-025-00661-4 |
DatabaseName | Springer Nature Open Access Journals CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional SwePub SWEPUB Kungliga Tekniska Högskolan full text SwePub Articles SWEPUB Freely available online SWEPUB Kungliga Tekniska Högskolan SwePub Articles full text |
DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Statistics Mathematics |
EISSN | 1573-2894 |
EndPage | 171 |
ExternalDocumentID | oai_DiVA_org_kth_360747 10_1007_s10589_025_00661_4 |
GrantInformation_xml | – fundername: Royal Institute of Technology |
GroupedDBID | -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 28- 29F 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 7WY 88I 8AO 8FE 8FG 8FL 8FW 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADHKG ADKNI ADKPE ADMLS ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHQJS AHSBF AHWEU AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMVHM AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BAPOH BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EBU EDO EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GROUPED_ABI_INFORM_RESEARCH GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M2P M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9R PF0 PHGZM PHGZT PQBIZ PQBZA PQGLB PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZD RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WK8 YLTOR Z45 ZL0 ZMTXR ZWQNP ~8M ~EX AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D ADTPV AFDQA AOWAS D8T D8V ZZAVC |
ID | FETCH-LOGICAL-c282t-ad26e937db7f8948ad1ee30e8de0f8d59247d65cd16e2eb5d52c13404011f9ea3 |
IEDL.DBID | U2A |
ISSN | 0926-6003 1573-2894 |
IngestDate | Thu Aug 21 06:47:22 EDT 2025 Sat Aug 16 21:25:40 EDT 2025 Tue Jul 01 05:19:59 EDT 2025 Mon Jul 21 06:10:19 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Stochastic quasi-Newton method Quasi-Newton method Quadratic programming Chance constrained model |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c282t-ad26e937db7f8948ad1ee30e8de0f8d59247d65cd16e2eb5d52c13404011f9ea3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6252-7815 |
OpenAccessLink | https://link.springer.com/10.1007/s10589-025-00661-4 |
PQID | 3180761007 |
PQPubID | 30811 |
PageCount | 27 |
ParticipantIDs | swepub_primary_oai_DiVA_org_kth_360747 proquest_journals_3180761007 crossref_primary_10_1007_s10589_025_00661_4 springer_journals_10_1007_s10589_025_00661_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-05-01 |
PublicationDateYYYYMMDD | 2025-05-01 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York |
PublicationSubtitle | An International Journal |
PublicationTitle | Computational optimization and applications |
PublicationTitleAbbrev | Comput Optim Appl |
PublicationYear | 2025 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | ED Dolan (661_CR5) 2002; 91 B Irwin (661_CR11) 2023; 84 661_CR19 Y Saad (661_CR21) 2003 661_CR4 661_CR16 661_CR15 D Ek (661_CR7) 2021; 79 L Nazareth (661_CR18) 1979; 16 DC Liu (661_CR14) 1989; 45 J Barrera (661_CR2) 2016; 157 J Luedtke (661_CR12) 2008; 19 H-JM Shi (661_CR23) 2022; 32 S Ahmed (661_CR1) 2018; 170 NIM Gould (661_CR9) 2015; 60 661_CR6 BK Pagnoncelli (661_CR20) 2009; 142 Y Xie (661_CR24) 2020; 30 A Mokhtari (661_CR17) 2015; 16 A Shapiro (661_CR22) 2014 661_CR13 GH Golub (661_CR10) 1996 RH Byrd (661_CR3) 2016; 26 A Forsgren (661_CR8) 2018; 69 |
References_xml | – volume-title: Lectures on Stochastic Programming: Modeling and Theory year: 2014 ident: 661_CR22 doi: 10.1137/1.9781611973433 – volume: 91 start-page: 201 issue: 2 year: 2002 ident: 661_CR5 publication-title: Math. Program. doi: 10.1007/s101070100263 – ident: 661_CR16 doi: 10.1109/GlobalSIP.2013.6737088 – volume: 142 start-page: 399 issue: 2 year: 2009 ident: 661_CR20 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-009-9523-6 – volume: 32 start-page: 29 issue: 1 year: 2022 ident: 661_CR23 publication-title: SIAM J. Optim. doi: 10.1137/20M1373190 – volume: 19 start-page: 674 issue: 2 year: 2008 ident: 661_CR12 publication-title: SIAM J. Optim. doi: 10.1137/070702928 – ident: 661_CR15 – volume: 26 start-page: 1008 issue: 2 year: 2016 ident: 661_CR3 publication-title: SIAM J. Optim. doi: 10.1137/140954362 – volume-title: Matrix Computations year: 1996 ident: 661_CR10 – ident: 661_CR13 – volume: 69 start-page: 225 issue: 1 year: 2018 ident: 661_CR8 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-017-9940-7 – volume: 84 start-page: 651 issue: 3 year: 2023 ident: 661_CR11 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-022-00448-x – volume: 45 start-page: 503 year: 1989 ident: 661_CR14 publication-title: Math. Program. doi: 10.1007/BF01589116 – volume: 16 start-page: 3151 issue: 1 year: 2015 ident: 661_CR17 publication-title: J. Mach. Learn. Res. – ident: 661_CR19 doi: 10.1007/1-84628-095-8_1 – volume: 79 start-page: 789 issue: 3 year: 2021 ident: 661_CR7 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-021-00277-4 – ident: 661_CR6 doi: 10.1007/BFb0121009 – ident: 661_CR4 – volume: 16 start-page: 794 year: 1979 ident: 661_CR18 publication-title: SIAM J. Numer. Anal. doi: 10.1137/0716059 – volume-title: Iterative Methods for Sparse Linear Systems year: 2003 ident: 661_CR21 doi: 10.1137/1.9780898718003 – volume: 170 start-page: 43 issue: 1 year: 2018 ident: 661_CR1 publication-title: Math. Program. doi: 10.1007/s10107-018-1295-z – volume: 157 start-page: 153 issue: 1 year: 2016 ident: 661_CR2 publication-title: Math. Program. doi: 10.1007/s10107-015-0942-x – volume: 60 start-page: 545 issue: 3 year: 2015 ident: 661_CR9 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-014-9687-3 – volume: 30 start-page: 182 issue: 1 year: 2020 ident: 661_CR24 publication-title: SIAM J. Optim. doi: 10.1137/19M1240794 |
SSID | ssj0009732 |
Score | 2.4025671 |
Snippet | We investigate quasi-Newton methods for minimizing a strongly convex quadratic function which is subject to errors in the evaluation of the gradients. In... |
SourceID | swepub proquest crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 145 |
SubjectTerms | Arithmetic Chance constrained model Constraints Convex and Discrete Geometry Error analysis Management Science Mathematics Mathematics and Statistics Methods Operations Research Operations Research/Decision Theory Optimization Quadratic equations Quadratic programming Quasi Newton methods Quasi-Newton method Searching Statistics Stochastic quasi-Newton method Subspaces |
Title | Finding search directions in quasi-Newton methods for minimizing a quadratic function subject to uncertainty |
URI | https://link.springer.com/article/10.1007/s10589-025-00661-4 https://www.proquest.com/docview/3180761007 https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-360747 |
Volume | 91 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R9lIOVSkglpaVD4gLWNrYsZMct0uXCtSeWFROll-BCNiFJnuAX9-ZPHYLqipxipLYjpRv7JmxZ74BeBmKNMjCp9yltHXjguBWWsszX5apslnh2uoNF5f6fJG-v1JXfVJYPUS7D0eS7Up9K9lNUXiPUJz0JHo-O7CnyHdHKV6I6ZZqN2vLkk0KoTmqc9mnytw9xt_qaGtjbo5F_6EQbdXO_BAOenuRTTuAH8GDuDyCh7dYBPHuYkO9Wh_BPpmPHfvyY_g-r9qsFdYJNOsUGEkaq5bs19rWFcdlDu0_1pWSrhkasYz4Rn5Uf6ijpVaBxMQz0oHUmdVrR9s3rFkxfNQFFTS_n8BifvZxds77-grco6PVcBuEjmieBJeVeZHmNiQxyknMQ5yUeVDommVBKx8SHUV0KijhE5nitE-SsohWPoXd5WoZnwGTmZNFwFbB-dQ7gY1z7VVZqFCqMuoRvB5-s_nZ0WiYLWEygWIQFNOCYtIRnAxImH5K1QYXH9pzwR4jeDOgs31932ivOgQ3XyZK7bfVp6lZXX8x35qvRmqqI_D8_8Y9hn3RShJFP57AbnO9ji_QQmncGPam89PTS7q--_zhbAw7Mz0bt2J6A7xv49Q |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VOBQOqFAqttDWh6qX1tImfiQ5ooXVtmU5QcXN8itq1LK0JHsov56ZJLtbEELimMR2JM_Y84098w3Ax1DIIAovuZN0dONCyq2wlme-LKWyWeHa6g3TMz25kN8u1WVPk0O5MA_u7ynFTVFQT6o4WUf0d9ZgQ6KnTOF7Iz1aEexmbTGyYZFqjkZc9Akyj49x3witkOXyMvQBcWhrbMavYLtHieyoE-sOvIizXdj6jzsQn6ZLwtV6FzYJNHacy6_h97hqc1VYp8asM1ukX6yasb9zW1ccNzdEfawrIF0zhK6MWEauqlvqaKlVIOXwjCwfdWb13NGhDWuuGb7qQgmaf3twMT45H014X1WBe3SvGm5DqiOCkuCyMi9kbkMSoxjGPMRhmQeFDlkWtPIh0TGNTgWV-kRIXOxJUhbRijewPruexX1gInOiCNgqOC-9S7Fxrr0qCxVKVUY9gM-LaTZ_OvIMs6JJJqEYFIpphWLkAA4XkjD9QqoNbjl00oI9BvBlIZ3V56dG-9RJcPlnItI-rn4cGdQv86v5aYSm6gFvnzfuB3g5OZ-emtOvZ98PYDNttYriHw9hvbmZx3eIURr3vlXOO-V83rk |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSKgcKiggFlrwAXEBq5v4keRYbVmVRysOFPVm-VkiIFua7IH--s7Y-wIhJI5JbEfKN_HMeGa-IeSlb4TnjRPMCjy6sb5khhvDKhejkKZqbOrecHKqjs_E-3N5vlHFn7LdlyHJXNOALE3dcHDp48FG4ZvEVJ9SMtSZ4AXdJnfAU0mB2omarGl3q9SibNyUioFq54uymb-v8btqWtubqxDpH3SiSQVN75Odhe1IDzPYD8it0O2SexuMgnB1sqJh7XfJNpqSmYn5Ifk-bVMFC83CTbMyQ6mjbUd_zk3fMtjywBakua10T8Ggpcg98qO9xokGR3kUGUdRH-Jk2s8tHuXQYUbhVk4wGH49ImfTt58nx2zRa4E5cLoGZnypApgq3laxbkRtfBECH4fah3GsvQQ3rfJKOl-oUAYrvSxdwQVsAUURm2D4Y7LVzbrwhFBeWd54GOWtE86WMLhWTsZG-ihjUCPyevmZ9WWm1NBr8mQERQMoOoGixYjsLZHQi9-r17AR4fkLzBiRN0t01o__tdqrjODqzUivfdR-OdSzqwv9bfiqucKeAk__b90X5O6no6n--O70wzOyXSahwqTIPbI1XM3DPhgug32eZPMG7V7nAA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finding+search+directions+in+quasi-Newton+methods+for+minimizing+a+quadratic+function+subject+to+uncertainty&rft.jtitle=Computational+optimization+and+applications&rft.au=Peng%2C+Shen&rft.au=Canessa%2C+Gianpiero&rft.au=Ek%2C+David&rft.au=Forsgren%2C+Anders&rft.date=2025-05-01&rft.pub=Springer+US&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=91&rft.issue=1&rft.spage=145&rft.epage=171&rft_id=info:doi/10.1007%2Fs10589-025-00661-4&rft.externalDocID=10_1007_s10589_025_00661_4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6003&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6003&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6003&client=summon |