Finding search directions in quasi-Newton methods for minimizing a quadratic function subject to uncertainty

We investigate quasi-Newton methods for minimizing a strongly convex quadratic function which is subject to errors in the evaluation of the gradients. In particular, we focus on computing search directions for quasi-Newton methods that all give identical behavior in exact arithmetic, generating mini...

Full description

Saved in:
Bibliographic Details
Published inComputational optimization and applications Vol. 91; no. 1; pp. 145 - 171
Main Authors Peng, Shen, Canessa, Gianpiero, Ek, David, Forsgren, Anders
Format Journal Article
LanguageEnglish
Published New York Springer US 01.05.2025
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We investigate quasi-Newton methods for minimizing a strongly convex quadratic function which is subject to errors in the evaluation of the gradients. In particular, we focus on computing search directions for quasi-Newton methods that all give identical behavior in exact arithmetic, generating minimizers of Krylov subspaces of increasing dimensions, thereby having finite termination. The BFGS quasi-Newton method may be seen as an ideal method in exact arithmetic and is empirically known to behave very well on a quadratic problem subject to small errors. We investigate large-error scenarios, in which the expected behavior is not so clear. We consider memoryless methods that are less expensive than the BFGS method, in that they generate low-rank quasi-Newton matrices that differ from the identity by a symmetric matrix of rank two. In addition, a more advanced model for generating the search directions is proposed, based on solving a chance-constrained optimization problem. Our numerical results indicate that for large errors, such a low-rank memoryless quasi-Newton method may perform better than a BFGS method. In addition, the results indicate a potential edge by including the chance-constrained model in the memoryless quasi-Newton method.
AbstractList We investigate quasi-Newton methods for minimizing a strongly convex quadratic function which is subject to errors in the evaluation of the gradients. In particular, we focus on computing search directions for quasi-Newton methods that all give identical behavior in exact arithmetic, generating minimizers of Krylov subspaces of increasing dimensions, thereby having finite termination. The BFGS quasi-Newton method may be seen as an ideal method in exact arithmetic and is empirically known to behave very well on a quadratic problem subject to small errors. We investigate large-error scenarios, in which the expected behavior is not so clear. We consider memoryless methods that are less expensive than the BFGS method, in that they generate low-rank quasi-Newton matrices that differ from the identity by a symmetric matrix of rank two. In addition, a more advanced model for generating the search directions is proposed, based on solving a chance-constrained optimization problem. Our numerical results indicate that for large errors, such a low-rank memoryless quasi-Newton method may perform better than a BFGS method. In addition, the results indicate a potential edge by including the chance-constrained model in the memoryless quasi-Newton method.
We investigate quasi-Newton methods for minimizing a strongly convex quadratic function which is subject to errors in the evaluation of the gradients. In particular, we focus on computing search directions for quasi-Newton methods that all give identical behavior in exact arithmetic, generating minimizers of Krylov subspaces of increasing dimensions, thereby having finite termination. The BFGS quasi-Newton method may be seen as an ideal method in exact arithmetic and is empirically known to behave very well on a quadratic problem subject to small errors. We investigate large-error scenarios, in which the expected behavior is not so clear. We consider memoryless methods that are less expensive than the BFGS method, in that they generate low-rank quasi-Newton matrices that differ from the identity by a symmetric matrix of rank two. In addition, a more advanced model for generating the search directions is proposed, based on solving a chance-constrained optimization problem. Our numerical results indicate that for large errors, such a low-rank memoryless quasi-Newton method may perform better than a BFGS method. In addition, the results indicate a potential edge by including the chance-constrained model in the memoryless quasi-Newton method.
Author Forsgren, Anders
Ek, David
Canessa, Gianpiero
Peng, Shen
Author_xml – sequence: 1
  givenname: Shen
  surname: Peng
  fullname: Peng, Shen
  organization: School of Mathematics and Statistics, Xidian University, Optimization and Systems Theory, Department of Mathematics, KTH Royal Institute of Technology
– sequence: 2
  givenname: Gianpiero
  surname: Canessa
  fullname: Canessa, Gianpiero
  organization: Optimization and Systems Theory, Department of Mathematics, KTH Royal Institute of Technology
– sequence: 3
  givenname: David
  surname: Ek
  fullname: Ek, David
  organization: Optimization and Systems Theory, Department of Mathematics, KTH Royal Institute of Technology
– sequence: 4
  givenname: Anders
  orcidid: 0000-0002-6252-7815
  surname: Forsgren
  fullname: Forsgren, Anders
  email: andersf@kth.se
  organization: Optimization and Systems Theory, Department of Mathematics, KTH Royal Institute of Technology
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-360747$$DView record from Swedish Publication Index
BookMark eNp9kcFuGyEURVGUSrHT_EBWSF3TPmAGZpZR2qSVonaTZIvw8MbGicEGRpH79cV21O66Qno65-qKOyfnIQYk5JrDZw6gv2QObdczEC0DUIqz5ozMeKslE13fnJMZ9EIxBSAvyDznNQD0WooZeb3zwfmwpBltGlbU-YRD8TFk6gPdTTZ79hPfSgx0g2UVXaZjTHTjg9_43wfRHiiXbPEDHadwlGmeFuuaQ0uk9YSpWB_K_iP5MNrXjFfv7yV5uvv2ePudPfy6_3F788AG0YnCrBMKe6ndQo-1fWcdR5SAnUMYO9f2otFOtYPjCgUuWteKgcsGGuB87NHKS8JOufkNt9PCbJPf2LQ30Xrz1T_fmJiW5qWsjFSgG135Tyd-m-JuwlzMOk4p1IpG8g60OvxxpcSJGlLMOeH4N5eDORDmtIKpK5jjCqapknyvUuGwxPQv-j_WH_CNjnw
Cites_doi 10.1137/1.9781611973433
10.1007/s101070100263
10.1109/GlobalSIP.2013.6737088
10.1007/s10957-009-9523-6
10.1137/20M1373190
10.1137/070702928
10.1137/140954362
10.1007/s10589-017-9940-7
10.1007/s10589-022-00448-x
10.1007/BF01589116
10.1007/1-84628-095-8_1
10.1007/s10589-021-00277-4
10.1007/BFb0121009
10.1137/0716059
10.1137/1.9780898718003
10.1007/s10107-018-1295-z
10.1007/s10107-015-0942-x
10.1007/s10589-014-9687-3
10.1137/19M1240794
ContentType Journal Article
Copyright The Author(s) 2025
Copyright Springer Nature B.V. May 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright Springer Nature B.V. May 2025
DBID C6C
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
DOI 10.1007/s10589-025-00661-4
DatabaseName Springer Nature Open Access Journals
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SwePub
SWEPUB Kungliga Tekniska Högskolan full text
SwePub Articles
SWEPUB Freely available online
SWEPUB Kungliga Tekniska Högskolan
SwePub Articles full text
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts


CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Mathematics
EISSN 1573-2894
EndPage 171
ExternalDocumentID oai_DiVA_org_kth_360747
10_1007_s10589_025_00661_4
GrantInformation_xml – fundername: Royal Institute of Technology
GroupedDBID -Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
28-
29F
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
7WY
88I
8AO
8FE
8FG
8FL
8FW
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHQJS
AHSBF
AHWEU
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EBU
EDO
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GROUPED_ABI_INFORM_RESEARCH
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9R
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZD
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WK8
YLTOR
Z45
ZL0
ZMTXR
ZWQNP
~8M
~EX
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ADTPV
AFDQA
AOWAS
D8T
D8V
ZZAVC
ID FETCH-LOGICAL-c282t-ad26e937db7f8948ad1ee30e8de0f8d59247d65cd16e2eb5d52c13404011f9ea3
IEDL.DBID U2A
ISSN 0926-6003
1573-2894
IngestDate Thu Aug 21 06:47:22 EDT 2025
Sat Aug 16 21:25:40 EDT 2025
Tue Jul 01 05:19:59 EDT 2025
Mon Jul 21 06:10:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Stochastic quasi-Newton method
Quasi-Newton method
Quadratic programming
Chance constrained model
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c282t-ad26e937db7f8948ad1ee30e8de0f8d59247d65cd16e2eb5d52c13404011f9ea3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6252-7815
OpenAccessLink https://link.springer.com/10.1007/s10589-025-00661-4
PQID 3180761007
PQPubID 30811
PageCount 27
ParticipantIDs swepub_primary_oai_DiVA_org_kth_360747
proquest_journals_3180761007
crossref_primary_10_1007_s10589_025_00661_4
springer_journals_10_1007_s10589_025_00661_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-01
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal
PublicationTitle Computational optimization and applications
PublicationTitleAbbrev Comput Optim Appl
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References ED Dolan (661_CR5) 2002; 91
B Irwin (661_CR11) 2023; 84
661_CR19
Y Saad (661_CR21) 2003
661_CR4
661_CR16
661_CR15
D Ek (661_CR7) 2021; 79
L Nazareth (661_CR18) 1979; 16
DC Liu (661_CR14) 1989; 45
J Barrera (661_CR2) 2016; 157
J Luedtke (661_CR12) 2008; 19
H-JM Shi (661_CR23) 2022; 32
S Ahmed (661_CR1) 2018; 170
NIM Gould (661_CR9) 2015; 60
661_CR6
BK Pagnoncelli (661_CR20) 2009; 142
Y Xie (661_CR24) 2020; 30
A Mokhtari (661_CR17) 2015; 16
A Shapiro (661_CR22) 2014
661_CR13
GH Golub (661_CR10) 1996
RH Byrd (661_CR3) 2016; 26
A Forsgren (661_CR8) 2018; 69
References_xml – volume-title: Lectures on Stochastic Programming: Modeling and Theory
  year: 2014
  ident: 661_CR22
  doi: 10.1137/1.9781611973433
– volume: 91
  start-page: 201
  issue: 2
  year: 2002
  ident: 661_CR5
  publication-title: Math. Program.
  doi: 10.1007/s101070100263
– ident: 661_CR16
  doi: 10.1109/GlobalSIP.2013.6737088
– volume: 142
  start-page: 399
  issue: 2
  year: 2009
  ident: 661_CR20
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-009-9523-6
– volume: 32
  start-page: 29
  issue: 1
  year: 2022
  ident: 661_CR23
  publication-title: SIAM J. Optim.
  doi: 10.1137/20M1373190
– volume: 19
  start-page: 674
  issue: 2
  year: 2008
  ident: 661_CR12
  publication-title: SIAM J. Optim.
  doi: 10.1137/070702928
– ident: 661_CR15
– volume: 26
  start-page: 1008
  issue: 2
  year: 2016
  ident: 661_CR3
  publication-title: SIAM J. Optim.
  doi: 10.1137/140954362
– volume-title: Matrix Computations
  year: 1996
  ident: 661_CR10
– ident: 661_CR13
– volume: 69
  start-page: 225
  issue: 1
  year: 2018
  ident: 661_CR8
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-017-9940-7
– volume: 84
  start-page: 651
  issue: 3
  year: 2023
  ident: 661_CR11
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-022-00448-x
– volume: 45
  start-page: 503
  year: 1989
  ident: 661_CR14
  publication-title: Math. Program.
  doi: 10.1007/BF01589116
– volume: 16
  start-page: 3151
  issue: 1
  year: 2015
  ident: 661_CR17
  publication-title: J. Mach. Learn. Res.
– ident: 661_CR19
  doi: 10.1007/1-84628-095-8_1
– volume: 79
  start-page: 789
  issue: 3
  year: 2021
  ident: 661_CR7
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-021-00277-4
– ident: 661_CR6
  doi: 10.1007/BFb0121009
– ident: 661_CR4
– volume: 16
  start-page: 794
  year: 1979
  ident: 661_CR18
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0716059
– volume-title: Iterative Methods for Sparse Linear Systems
  year: 2003
  ident: 661_CR21
  doi: 10.1137/1.9780898718003
– volume: 170
  start-page: 43
  issue: 1
  year: 2018
  ident: 661_CR1
  publication-title: Math. Program.
  doi: 10.1007/s10107-018-1295-z
– volume: 157
  start-page: 153
  issue: 1
  year: 2016
  ident: 661_CR2
  publication-title: Math. Program.
  doi: 10.1007/s10107-015-0942-x
– volume: 60
  start-page: 545
  issue: 3
  year: 2015
  ident: 661_CR9
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-014-9687-3
– volume: 30
  start-page: 182
  issue: 1
  year: 2020
  ident: 661_CR24
  publication-title: SIAM J. Optim.
  doi: 10.1137/19M1240794
SSID ssj0009732
Score 2.4025671
Snippet We investigate quasi-Newton methods for minimizing a strongly convex quadratic function which is subject to errors in the evaluation of the gradients. In...
SourceID swepub
proquest
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 145
SubjectTerms Arithmetic
Chance constrained model
Constraints
Convex and Discrete Geometry
Error analysis
Management Science
Mathematics
Mathematics and Statistics
Methods
Operations Research
Operations Research/Decision Theory
Optimization
Quadratic equations
Quadratic programming
Quasi Newton methods
Quasi-Newton method
Searching
Statistics
Stochastic quasi-Newton method
Subspaces
Title Finding search directions in quasi-Newton methods for minimizing a quadratic function subject to uncertainty
URI https://link.springer.com/article/10.1007/s10589-025-00661-4
https://www.proquest.com/docview/3180761007
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-360747
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7R9lIOVSkglpaVD4gLWNrYsZMct0uXCtSeWFROll-BCNiFJnuAX9-ZPHYLqipxipLYjpRv7JmxZ74BeBmKNMjCp9yltHXjguBWWsszX5apslnh2uoNF5f6fJG-v1JXfVJYPUS7D0eS7Up9K9lNUXiPUJz0JHo-O7CnyHdHKV6I6ZZqN2vLkk0KoTmqc9mnytw9xt_qaGtjbo5F_6EQbdXO_BAOenuRTTuAH8GDuDyCh7dYBPHuYkO9Wh_BPpmPHfvyY_g-r9qsFdYJNOsUGEkaq5bs19rWFcdlDu0_1pWSrhkasYz4Rn5Uf6ijpVaBxMQz0oHUmdVrR9s3rFkxfNQFFTS_n8BifvZxds77-grco6PVcBuEjmieBJeVeZHmNiQxyknMQ5yUeVDommVBKx8SHUV0KijhE5nitE-SsohWPoXd5WoZnwGTmZNFwFbB-dQ7gY1z7VVZqFCqMuoRvB5-s_nZ0WiYLWEygWIQFNOCYtIRnAxImH5K1QYXH9pzwR4jeDOgs31932ivOgQ3XyZK7bfVp6lZXX8x35qvRmqqI_D8_8Y9hn3RShJFP57AbnO9ji_QQmncGPam89PTS7q--_zhbAw7Mz0bt2J6A7xv49Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VOBQOqFAqttDWh6qX1tImfiQ5ooXVtmU5QcXN8itq1LK0JHsov56ZJLtbEELimMR2JM_Y84098w3Ax1DIIAovuZN0dONCyq2wlme-LKWyWeHa6g3TMz25kN8u1WVPk0O5MA_u7ynFTVFQT6o4WUf0d9ZgQ6KnTOF7Iz1aEexmbTGyYZFqjkZc9Akyj49x3witkOXyMvQBcWhrbMavYLtHieyoE-sOvIizXdj6jzsQn6ZLwtV6FzYJNHacy6_h97hqc1VYp8asM1ukX6yasb9zW1ccNzdEfawrIF0zhK6MWEauqlvqaKlVIOXwjCwfdWb13NGhDWuuGb7qQgmaf3twMT45H014X1WBe3SvGm5DqiOCkuCyMi9kbkMSoxjGPMRhmQeFDlkWtPIh0TGNTgWV-kRIXOxJUhbRijewPruexX1gInOiCNgqOC-9S7Fxrr0qCxVKVUY9gM-LaTZ_OvIMs6JJJqEYFIpphWLkAA4XkjD9QqoNbjl00oI9BvBlIZ3V56dG-9RJcPlnItI-rn4cGdQv86v5aYSm6gFvnzfuB3g5OZ-emtOvZ98PYDNttYriHw9hvbmZx3eIURr3vlXOO-V83rk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELagSKgcKiggFlrwAXEBq5v4keRYbVmVRysOFPVm-VkiIFua7IH--s7Y-wIhJI5JbEfKN_HMeGa-IeSlb4TnjRPMCjy6sb5khhvDKhejkKZqbOrecHKqjs_E-3N5vlHFn7LdlyHJXNOALE3dcHDp48FG4ZvEVJ9SMtSZ4AXdJnfAU0mB2omarGl3q9SibNyUioFq54uymb-v8btqWtubqxDpH3SiSQVN75Odhe1IDzPYD8it0O2SexuMgnB1sqJh7XfJNpqSmYn5Ifk-bVMFC83CTbMyQ6mjbUd_zk3fMtjywBakua10T8Ggpcg98qO9xokGR3kUGUdRH-Jk2s8tHuXQYUbhVk4wGH49ImfTt58nx2zRa4E5cLoGZnypApgq3laxbkRtfBECH4fah3GsvQQ3rfJKOl-oUAYrvSxdwQVsAUURm2D4Y7LVzbrwhFBeWd54GOWtE86WMLhWTsZG-ihjUCPyevmZ9WWm1NBr8mQERQMoOoGixYjsLZHQi9-r17AR4fkLzBiRN0t01o__tdqrjODqzUivfdR-OdSzqwv9bfiqucKeAk__b90X5O6no6n--O70wzOyXSahwqTIPbI1XM3DPhgug32eZPMG7V7nAA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Finding+search+directions+in+quasi-Newton+methods+for+minimizing+a+quadratic+function+subject+to+uncertainty&rft.jtitle=Computational+optimization+and+applications&rft.au=Peng%2C+Shen&rft.au=Canessa%2C+Gianpiero&rft.au=Ek%2C+David&rft.au=Forsgren%2C+Anders&rft.date=2025-05-01&rft.pub=Springer+US&rft.issn=0926-6003&rft.eissn=1573-2894&rft.volume=91&rft.issue=1&rft.spage=145&rft.epage=171&rft_id=info:doi/10.1007%2Fs10589-025-00661-4&rft.externalDocID=10_1007_s10589_025_00661_4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-6003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-6003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-6003&client=summon