Finding search directions in quasi-Newton methods for minimizing a quadratic function subject to uncertainty
We investigate quasi-Newton methods for minimizing a strongly convex quadratic function which is subject to errors in the evaluation of the gradients. In particular, we focus on computing search directions for quasi-Newton methods that all give identical behavior in exact arithmetic, generating mini...
Saved in:
Published in | Computational optimization and applications Vol. 91; no. 1; pp. 145 - 171 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.05.2025
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We investigate quasi-Newton methods for minimizing a strongly convex quadratic function which is subject to errors in the evaluation of the gradients. In particular, we focus on computing search directions for quasi-Newton methods that all give identical behavior in exact arithmetic, generating minimizers of Krylov subspaces of increasing dimensions, thereby having finite termination. The BFGS quasi-Newton method may be seen as an ideal method in exact arithmetic and is empirically known to behave very well on a quadratic problem subject to small errors. We investigate large-error scenarios, in which the expected behavior is not so clear. We consider memoryless methods that are less expensive than the BFGS method, in that they generate
low-rank quasi-Newton matrices
that differ from the identity by a symmetric matrix of rank two. In addition, a more advanced model for generating the search directions is proposed, based on solving a chance-constrained optimization problem. Our numerical results indicate that for large errors, such a low-rank memoryless quasi-Newton method may perform better than a BFGS method. In addition, the results indicate a potential edge by including the chance-constrained model in the memoryless quasi-Newton method. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0926-6003 1573-2894 1573-2894 |
DOI: | 10.1007/s10589-025-00661-4 |