Prompt efficiency of energy harvesting by magnetic coupling of an improved bi-stable system

In order to improve the transform efficiency of bi-stable energy harvester(BEH),this paper proposes an advanced bi-stable energy harvester(ABEH),which is composed of two bi-stable beams coupling through their magnets.Theoretical analyzes and simulations for the ABEH are carried out.First,the mathema...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 25; no. 11; pp. 174 - 183
Main Author 李海涛 秦卫阳
Format Journal Article
LanguageEnglish
Published 01.11.2016
Online AccessGet full text

Cover

Loading…
More Information
Summary:In order to improve the transform efficiency of bi-stable energy harvester(BEH),this paper proposes an advanced bi-stable energy harvester(ABEH),which is composed of two bi-stable beams coupling through their magnets.Theoretical analyzes and simulations for the ABEH are carried out.First,the mathematical model is established and its dynamical equations are derived.The formulas of magnetic force in two directions are given.The potential energy barrier of ABEH is reduced and the snap-through is liable to occur between potential wells.To demonstrate the ABEH's advantage in harvesting energy,comparisons between the ABEH and the BEH are carried out for both harmonic and stochastic excitations.Our results reveal that the ABEH's inter-well response can be elicited by a low-frequency excitation and the harvester can attain frequent jumping between potential wells at fairly weak random excitations.Thus,it can generate a higher output power.The present findings prove that the ABEH is preferable in harvesting energy and can be optimally designed such that it attains the best harvesting performance.
Bibliography:In order to improve the transform efficiency of bi-stable energy harvester(BEH),this paper proposes an advanced bi-stable energy harvester(ABEH),which is composed of two bi-stable beams coupling through their magnets.Theoretical analyzes and simulations for the ABEH are carried out.First,the mathematical model is established and its dynamical equations are derived.The formulas of magnetic force in two directions are given.The potential energy barrier of ABEH is reduced and the snap-through is liable to occur between potential wells.To demonstrate the ABEH's advantage in harvesting energy,comparisons between the ABEH and the BEH are carried out for both harmonic and stochastic excitations.Our results reveal that the ABEH's inter-well response can be elicited by a low-frequency excitation and the harvester can attain frequent jumping between potential wells at fairly weak random excitations.Thus,it can generate a higher output power.The present findings prove that the ABEH is preferable in harvesting energy and can be optimally designed such that it attains the best harvesting performance.
harvesting piezoelectric attain directions liable stochastic fairly clamped dynamical harmonic
11-5639/O4
ISSN:1674-1056
2058-3834
DOI:10.1088/1674-1056/25/11/110503