Crosstalk analysis of silicon-on-insulator nanowire-arrayed waveguide grating
The factors influencing the crosstalk of silicon-on-insulator (SO1) nanowire arrayed waveguide grating (AWG) are analyzed using the transfer function method. The analysis shows that wider and thicker arrayed waveguides, outsider fracture of arrayed waveguide, and larger channel space, could mitigate...
Saved in:
Published in | Chinese physics B Vol. 25; no. 12; pp. 294 - 299 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.12.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 |
DOI | 10.1088/1674-1056/25/12/124209 |
Cover
Loading…
Summary: | The factors influencing the crosstalk of silicon-on-insulator (SO1) nanowire arrayed waveguide grating (AWG) are analyzed using the transfer function method. The analysis shows that wider and thicker arrayed waveguides, outsider fracture of arrayed waveguide, and larger channel space, could mitigate the deterioration of crosstalk. The SOI nanowire AWGs with different arrayed waveguide widths are fabricated by using deep ultraviolet lithography (DUV) and inductively coupled plasma etching (ICP) technology. The measurement results show that the crosstalk performance is improved by about 7 dB through adopting 800 nm arrayed waveguide width. |
---|---|
Bibliography: | The factors influencing the crosstalk of silicon-on-insulator (SO1) nanowire arrayed waveguide grating (AWG) are analyzed using the transfer function method. The analysis shows that wider and thicker arrayed waveguides, outsider fracture of arrayed waveguide, and larger channel space, could mitigate the deterioration of crosstalk. The SOI nanowire AWGs with different arrayed waveguide widths are fabricated by using deep ultraviolet lithography (DUV) and inductively coupled plasma etching (ICP) technology. The measurement results show that the crosstalk performance is improved by about 7 dB through adopting 800 nm arrayed waveguide width. SOI, nanowire AWG, crosstalk, phase errors Kai-Li Li, Jun-Ming An, Jia-Shun Zhang, Yue Wang, Liang-Liang Wang, Jian-Guang Li, Yuan-Da Wu, Xiao-Jie Yin, and Xiong-Wei Hu(State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China) 11-5639/O4 |
ISSN: | 1674-1056 2058-3834 |
DOI: | 10.1088/1674-1056/25/12/124209 |