SEU-sensitive volumes in bulk and SOI SRAMs from first-principles calculations and experiments

Large-scale three-dimensional (3D) device simulations, focused ion microscopy, and broadbeam heavy-ion experiments are used to determine and compare the SEU-sensitive volumes of bulk-Si and SOI CMOS SRAMs. Single-event upset maps and cross-section curves calculated directly from 3D simulations show...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on nuclear science Vol. 48; no. 6; pp. 1893 - 1903
Main Authors Dodd, P.E., Shaneyfelt, A.R., Horn, K.M., Walsh, D.S., Hash, G.L., Hill, T.A., Draper, B.L., Schwank, J.R., Sexton, F.W., Winokur, P.S.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.12.2001
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Large-scale three-dimensional (3D) device simulations, focused ion microscopy, and broadbeam heavy-ion experiments are used to determine and compare the SEU-sensitive volumes of bulk-Si and SOI CMOS SRAMs. Single-event upset maps and cross-section curves calculated directly from 3D simulations show excellent agreement with broadbeam cross section curves and microbeam, charge collection and upset images for 16 K bulk-Si SRAMs. Charge-collection and single-event upset (SEU) experiments on 64 K and 1 M SOI SRAMs indicate that drain strikes can cause single-event upsets in SOI ICs. 3D simulations do not predict this result, which appears to be due to anomalous charge collection from the substrate through the buried oxide. This substrate charge-collection mechanism can considerably increase the SEU-sensitive volume of SOI SRAMs, and must be included in single-event models if they are to provide accurate predictions of SOI device response in radiation environments.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9499
1558-1578
DOI:10.1109/23.983148