Pollutant removal efficiency of bare and planted rain gardens with diverse planting mixtures

This study examines the influence of planting mixture variations on the quality of the percolated water of the rain garden with and without plants. Six planting mixtures in experimental rain gardens have been used. It has been noted that pollutant removal efficiency of RG can exhibit variations base...

Full description

Saved in:
Bibliographic Details
Published inWater science and technology Vol. 89; no. 12; pp. 3226 - 3236
Main Authors Kumar, Sandeep, Singh, Krishna Kumar
Format Journal Article
LanguageEnglish
Published England IWA Publishing 01.06.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study examines the influence of planting mixture variations on the quality of the percolated water of the rain garden with and without plants. Six planting mixtures in experimental rain gardens have been used. It has been noted that pollutant removal efficiency of RG can exhibit variations based on specific parameters. Notably, RG6, utilizing a planting mix of 75% topsoil and 25% compost, demonstrated the highest performance. These results draw attention to the critical role of the specific planting mixtures in influencing the performance of vital parameters related to pollutant removal. The observation shows that RG5 exhibits exceptional removal efficiency in pH, Total Suspended Solids (TSS), Biological Oxygen Demand (BOD), and Chemical Oxygen Demand (COD), and RG6 performs best in electrical conductivity (EC), Total Dissolved Solids (TDS), Total Nitrogen (TN), and Total Phosphorus (TP) removal. In particular, when analyzing pollutant removal on a surface with Madagascar periwinkle plants, RG6 emerges as the most effective, achieving an impressive efficiency of approximately 49%. For the bare surface, pollutant removal efficiency is 40%. The study outcome will be useful in deciding the composition of the planting mixture, which will keep the rain garden to improve quality and quantitatively hydrological performance, lowering urban flooding magnitude.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0273-1223
1996-9732
DOI:10.2166/wst.2024.192