Differential cell motion: A mathematical model of anterior posterior sorting

Here, we investigate how a subpopulation of cells can move through an aggregate of cells. Using a stochastic force-based model of Dictyostelium discoideum when the population is forming a slug, we simulate different strategies for prestalk cells to reliably move to the front of the slug while omitti...

Full description

Saved in:
Bibliographic Details
Published inBiophysical journal Vol. 122; no. 21; pp. 4160 - 4175
Main Authors Song, Joy, Evans, Emily J., Dallon, J.C.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 07.11.2023
Online AccessGet full text

Cover

Loading…
More Information
Summary:Here, we investigate how a subpopulation of cells can move through an aggregate of cells. Using a stochastic force-based model of Dictyostelium discoideum when the population is forming a slug, we simulate different strategies for prestalk cells to reliably move to the front of the slug while omitting interaction with the substrate thus ignoring the overall motion of the slug. Of the mechanisms that we simulated, prestalk cells being more directed is the best strategy followed by increased asymmetric motive forces for prestalk cells. The lifetime of the cell adhesion molecules, while not enough to produce differential motion, did modulate the results of the strategies employed. Finally, understanding and simulating the appropriate boundary conditions are essential to correctly predict the motion.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0006-3495
1542-0086
DOI:10.1016/j.bpj.2023.09.013