FOXP3 targets KIF5A to increase lactate production and promote docetaxel resistance in lung adenocarcinoma

A prominent cause of cancer-related fatalities with a poor prognosis is lung adenocarcinoma (LUAD). KIF5A, a crucial member of the kinesin superfamily, is linked to drug resistance in malignancies. This work aims to investigate the mechanism of KIF5A in docetaxel (DTX) resistance in LUAD cells. The...

Full description

Saved in:
Bibliographic Details
Published inActa biochimica et biophysica Sinica Vol. 56; no. 7; pp. 1011 - 1021
Main Authors Dong, Liangliang, Feng, Chan, Cheng, Wenwen, Huang, Aihua, Ying, Kejing
Format Journal Article
LanguageEnglish
Published China China Science Publishing & Media Ltd 01.07.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A prominent cause of cancer-related fatalities with a poor prognosis is lung adenocarcinoma (LUAD). KIF5A, a crucial member of the kinesin superfamily, is linked to drug resistance in malignancies. This work aims to investigate the mechanism of KIF5A in docetaxel (DTX) resistance in LUAD cells. The results of bioinformatics analysis, qRT-PCR and western blot analysis show that KIF5A, which is involved in the glycolysis pathway, is highly expressed in LUAD and is positively correlated with glycolysis-related genes. We further verify that silencing of inhibits DTX resistance, glycolysis, and lactate production in LUAD cells via cell counting kit-8 (CCK-8), flow cytometry, Seahorse XFe 96, lactate, and glucose assays. Mechanistically, KIF5A promotes DTX resistance in LUAD, and this effect is attenuated upon the addition of an LDHA inhibitor. Chromatin immunoprecipitation and dual-luciferase reporter assays reveal that FOXP3 transcriptionally activates KIF5A. Knockdown of reduces lactate production and enhances DTX sensitivity in LUAD, which is restored upon simultaneous overexpression of KIF5A. Our findings reveal that FOXP3 increases DTX resistance in LUAD cells by enhancing lactate production through the upregulation of KIF5A level. In conclusion, our study provides a novel treatment target for improving chemosensitivity in LUAD.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1672-9145
1745-7270
1745-7270
DOI:10.3724/abbs.2024082