Sleep Stage Classification by a Combination of Actigraphic and Heart Rate Signals

Although heart rate variability and actigraphic data have been used for sleep-wake or sleep stage classifications, there are few studies on the combined use of them. Recent wearable sensors, however, equip both pulse wave and actigraphic sensors. This paper presents results on the performance of sle...

Full description

Saved in:
Bibliographic Details
Published inJournal of low power electronics and applications Vol. 7; no. 4; p. 28
Main Authors Yuda, Emi, Yoshida, Yutaka, Sasanabe, Ryujiro, Tanaka, Haruhito, Shiomi, Toshiaki, Hayano, Junichiro
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Although heart rate variability and actigraphic data have been used for sleep-wake or sleep stage classifications, there are few studies on the combined use of them. Recent wearable sensors, however, equip both pulse wave and actigraphic sensors. This paper presents results on the performance of sleep stage classification by a combination of heart rate and actigraphic signals. We studied 40,643 epochs (length 3 min) of polysomnographic data in 289 subjects. A combined model, consisting of autonomic functional indices from heart rate variability and body movement indices derived from actigraphic data, discriminated non-rapid-eye-movement (REM) sleep from waking/REM sleep with 76.9% sensitivity, 74.5% specificity, 75.8% accuracy, and a Cohen’s kappa of 0.514. The combination was also useful for discriminating between REM sleep and waking at 77.2% sensitivity, 72.3% specificity, 74.5% accuracy, and a kappa of 0.491.
ISSN:2079-9268
2079-9268
DOI:10.3390/jlpea7040028