Muscle oxygenation, endocrine and metabolic regulation during low-intensity endurance exercise with blood flow restriction

The present study investigated the effect of endurance exercise with blood flow restriction (BFR) performed at either 25% maximal oxygen uptake (V˙O2 max) or 40% V˙O2 max) on muscle oxygenation, energy metabolism, and endocrine responses.PURPOSEThe present study investigated the effect of endurance...

Full description

Saved in:
Bibliographic Details
Published inJournal of exercise nutrition & biochemistry Vol. 24; no. 2; pp. 30 - 37
Main Authors Hwang, Hyejung, Mizuno, Sahiro, Kasai, Nobukazu, Kojima, Chihiro, Sumi, Daichi, Hayashi, Nanako, Goto, Kazushige
Format Journal Article
LanguageEnglish
Published 한국운동영양학회 30.06.2020
Subjects
Online AccessGet full text
ISSN2233-6842
2733-7545
2233-6842
2733-7545
DOI10.20463/pan.2020.0012

Cover

More Information
Summary:The present study investigated the effect of endurance exercise with blood flow restriction (BFR) performed at either 25% maximal oxygen uptake (V˙O2 max) or 40% V˙O2 max) on muscle oxygenation, energy metabolism, and endocrine responses.PURPOSEThe present study investigated the effect of endurance exercise with blood flow restriction (BFR) performed at either 25% maximal oxygen uptake (V˙O2 max) or 40% V˙O2 max) on muscle oxygenation, energy metabolism, and endocrine responses.Ten males were recruited in the present study. The subjects performed three trials: (1) endurance exercise at 40% V˙O2 max without BFR (NBFR40), (2) endurance exercise at 25% V˙O2 max with BFR (BFR25), and (3) endurance exercise at 40% V˙O2 max with BFR (BFR40). The exercises were performed for 15 min during which the pedaling frequency was set at 70 rpm. In BFR25 and BFR40, 2 min of pressure phase (equivalent to 160 mmHg) followed by 1 min of release phase were repeated five times (5 × 3 min) throughout 15 minutes of exercise. During exercise, muscle oxygenation and concentration of respiratory gases were measured. The blood samples were collected before exercise, immediately after 15 min of exercise, and at 15, 30, and 60 minutes after completion of exercise.METHODSTen males were recruited in the present study. The subjects performed three trials: (1) endurance exercise at 40% V˙O2 max without BFR (NBFR40), (2) endurance exercise at 25% V˙O2 max with BFR (BFR25), and (3) endurance exercise at 40% V˙O2 max with BFR (BFR40). The exercises were performed for 15 min during which the pedaling frequency was set at 70 rpm. In BFR25 and BFR40, 2 min of pressure phase (equivalent to 160 mmHg) followed by 1 min of release phase were repeated five times (5 × 3 min) throughout 15 minutes of exercise. During exercise, muscle oxygenation and concentration of respiratory gases were measured. The blood samples were collected before exercise, immediately after 15 min of exercise, and at 15, 30, and 60 minutes after completion of exercise.Deoxygenated hemoglobin (deoxy-Hb) level during exercise was significantly higher with BFR25 and BFR40 than that with NBFR40. BFR40 showed significantly higher total-hemoglobin (total-Hb) than NBFR40 during 2 min of pressure phase. Moreover, exercise-induced lactate elevation and pH reduction were significantly augmented in BFR40, with concomitant increase in serum cortisol concentration after exercise. Carbohydrate (CHO) oxidation was significantly higher with BFR40 than that with NBFR40 and BFR25, whereas fat oxidation was lower with BFR40.RESULTSDeoxygenated hemoglobin (deoxy-Hb) level during exercise was significantly higher with BFR25 and BFR40 than that with NBFR40. BFR40 showed significantly higher total-hemoglobin (total-Hb) than NBFR40 during 2 min of pressure phase. Moreover, exercise-induced lactate elevation and pH reduction were significantly augmented in BFR40, with concomitant increase in serum cortisol concentration after exercise. Carbohydrate (CHO) oxidation was significantly higher with BFR40 than that with NBFR40 and BFR25, whereas fat oxidation was lower with BFR40.Deoxy-Hb and total Hb levels were significantly increased during 15 min of pedaling exercise in BFR25 and BFR40, indicating augmented local hypoxia and blood volume (blood perfusion) in the muscle. Moreover, low-and moderate-intensity exercise with BFR facilitated CHO oxidation.CONCLUSIONDeoxy-Hb and total Hb levels were significantly increased during 15 min of pedaling exercise in BFR25 and BFR40, indicating augmented local hypoxia and blood volume (blood perfusion) in the muscle. Moreover, low-and moderate-intensity exercise with BFR facilitated CHO oxidation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2233-6842
2733-7545
2233-6842
2733-7545
DOI:10.20463/pan.2020.0012