Single Finger Trajectory Prediction From Intracranial Brain Activity Using Block-Term Tensor Regression With Fast and Automatic Component Extraction

Multiway- or tensor-based decoding techniques for brain-computer interfaces (BCIs) are believed to better account for the multilinear structure of brain signals than conventional vector- or matrix-based ones. However, despite their outlook on significant performance gains, the used parameter optimiz...

Full description

Saved in:
Bibliographic Details
Published inIEEE transaction on neural networks and learning systems Vol. 35; no. 7; pp. 8897 - 8908
Main Authors Faes, Axel, Camarrone, Flavio, Van Hulle, Marc M.
Format Journal Article
LanguageEnglish
Published United States IEEE 01.07.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Multiway- or tensor-based decoding techniques for brain-computer interfaces (BCIs) are believed to better account for the multilinear structure of brain signals than conventional vector- or matrix-based ones. However, despite their outlook on significant performance gains, the used parameter optimization approach is often too computationally demanding so that conventional techniques are still preferred. We propose two novel tensor factorizations which we integrate into our block-term tensor regression (BTTR) algorithm and further introduce a marginalization procedure that guarantees robust predictions while reducing the risk of overfitting (generalized regression). BTTR accounts for the underlying (hidden) data structure in a fully automatic and computationally efficient manner, leading to a significant performance gain over conventional vector- or matrix-based techniques in a challenging real-world application. As a challenging real-world application, we apply BTTR to accurately predict single finger movement trajectories from intracranial recordings in human subjects. We compare the obtained performance with that of the state-of-the-art.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2162-237X
2162-2388
2162-2388
DOI:10.1109/TNNLS.2022.3216589