Improving nitrogen use efficiency in plants: effective phenotyping in conjunction with agronomic and genetic approaches

For global sustainable food production and environmental benefits, there is an urgent need to improve N use efficiency (NUE) in crop plants. Excessive and inefficient use of N fertiliser results in increased crop production costs and environmental pollution. Therefore, cost-effective strategies such...

Full description

Saved in:
Bibliographic Details
Published inFunctional plant biology : FPB Vol. 45; no. 6; pp. 606 - 619
Main Authors Nguyen, Giao N, Kant, Surya
Format Journal Article
LanguageEnglish
Published Australia 01.01.2018
Online AccessGet full text

Cover

Loading…
More Information
Summary:For global sustainable food production and environmental benefits, there is an urgent need to improve N use efficiency (NUE) in crop plants. Excessive and inefficient use of N fertiliser results in increased crop production costs and environmental pollution. Therefore, cost-effective strategies such as proper management of the timing and quantity of N fertiliser application, and breeding for better varieties are needed to improve NUE in crops. However, for these efforts to be feasible, high-throughput and reliable phenotyping techniques would be very useful for monitoring N status in planta, as well as to facilitate faster decisions during breeding and selection processes. This review provides an insight into contemporary approaches to phenotyping NUE-related traits and associated challenges. We discuss recent and advanced, sensor- and image-based phenotyping techniques that use a variety of equipment, tools and platforms. The review also elaborates on how high-throughput phenotyping will accelerate efforts for screening large populations of diverse genotypes in controlled environment and field conditions to identify novel genotypes with improved NUE.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1445-4408
1445-4416
DOI:10.1071/FP17266