Swelling and mechanical properties of thermoresponsive/hydrophilic conetworks with crosslinked domain structures prepared from various triblock precursors
A designed amphiphilic conetwork (APCN) having thermoresponsive polymer chains is attractive for the development of novel stimuli-responsive materials with a controlled responsive behavior. We have recently proposed a novel APCN having crosslinked domain (CD) structures prepared by the post-polymeri...
Saved in:
Published in | Polymer chemistry Vol. 1; no. 45; pp. 6122 - 613 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
07.12.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A designed amphiphilic conetwork (APCN) having thermoresponsive polymer chains is attractive for the development of novel stimuli-responsive materials with a controlled responsive behavior. We have recently proposed a novel APCN having crosslinked domain (CD) structures prepared by the post-polymerization crosslinking of controlled triblock precursor polymers with reactive sites in the outer blocks. In the current study, we evaluated the effects of the structures of the triblock precursors including the sequence, molecular weight, and composition on the gelation reaction and the swelling properties of the obtained gels in detail. The gelation reaction and the volume at the swelling state at a low temperature were strongly affected by the molecular weight of the middle block of a precursor, whereas the temperature and the sharpness of the response were controlled by the composition of a precursor. Interestingly, the gel consisting of thermoresponsive CDs and hydrophilic bridging chains had improved elastic modulus and elongation ability upon heating in air without external water, probably because water flowed between the thermoresponsive CDs and the domains of the hydrophilic bridging chains in response to temperature change.
Thermoresponsive conetworks with crosslinked domain structures were designed by the crosslinking of triblock polymers for responsive gel functioning without external water. |
---|---|
AbstractList | A designed amphiphilic conetwork (APCN) having thermoresponsive polymer chains is attractive for the development of novel stimuli-responsive materials with a controlled responsive behavior. We have recently proposed a novel APCN having crosslinked domain (CD) structures prepared by the post-polymerization crosslinking of controlled triblock precursor polymers with reactive sites in the outer blocks. In the current study, we evaluated the effects of the structures of the triblock precursors including the sequence, molecular weight, and composition on the gelation reaction and the swelling properties of the obtained gels in detail. The gelation reaction and the volume at the swelling state at a low temperature were strongly affected by the molecular weight of the middle block of a precursor, whereas the temperature and the sharpness of the response were controlled by the composition of a precursor. Interestingly, the gel consisting of thermoresponsive CDs and hydrophilic bridging chains had improved elastic modulus and elongation ability upon heating in air without external water, probably because water flowed between the thermoresponsive CDs and the domains of the hydrophilic bridging chains in response to temperature change. A designed amphiphilic conetwork (APCN) having thermoresponsive polymer chains is attractive for the development of novel stimuli-responsive materials with a controlled responsive behavior. We have recently proposed a novel APCN having crosslinked domain (CD) structures prepared by the post-polymerization crosslinking of controlled triblock precursor polymers with reactive sites in the outer blocks. In the current study, we evaluated the effects of the structures of the triblock precursors including the sequence, molecular weight, and composition on the gelation reaction and the swelling properties of the obtained gels in detail. The gelation reaction and the volume at the swelling state at a low temperature were strongly affected by the molecular weight of the middle block of a precursor, whereas the temperature and the sharpness of the response were controlled by the composition of a precursor. Interestingly, the gel consisting of thermoresponsive CDs and hydrophilic bridging chains had improved elastic modulus and elongation ability upon heating in air without external water, probably because water flowed between the thermoresponsive CDs and the domains of the hydrophilic bridging chains in response to temperature change. Thermoresponsive conetworks with crosslinked domain structures were designed by the crosslinking of triblock polymers for responsive gel functioning without external water. |
Author | Ida, Shohei Kitanaka, Hironobu Hirokawa, Yoshitsugu Kanaoka, Shokyoku Morimura, Miki |
AuthorAffiliation | Department of Materials Science The University of Shiga Prefecture |
AuthorAffiliation_xml | – name: The University of Shiga Prefecture – name: Department of Materials Science |
Author_xml | – sequence: 1 givenname: Shohei surname: Ida fullname: Ida, Shohei – sequence: 2 givenname: Miki surname: Morimura fullname: Morimura, Miki – sequence: 3 givenname: Hironobu surname: Kitanaka fullname: Kitanaka, Hironobu – sequence: 4 givenname: Yoshitsugu surname: Hirokawa fullname: Hirokawa, Yoshitsugu – sequence: 5 givenname: Shokyoku surname: Kanaoka fullname: Kanaoka, Shokyoku |
BookMark | eNptkcFq3EAMhoeSQNMkl94LA70VtvF4xuudY1iathBIIemhJ6OV5Xqy9oyrGWfZV-nTdpINKZTqIoE-_ZL434gjHzwJ8VYVH1Wh7QXaaV8oo2p4JU5UXdmFtcvy6KWuzGtxHuN9kUMrU-rlifh9u6NhcP6nBN_KkbAH7xAGOXGYiJOjKEMnU088BqY4BR_dA130-zYDvRscSsxnpF3gbZQ7l3qJHGLMmltqZRtGcF7GxDOmOQtkYZqAc6vjMMoHYBfmKBO7zRBw-9jGmWPgeCaOOxginT_nU_H96tPd-svi-ubz1_Xl9QLLlUoLgI0lY5dmuaqruq4RyShVKatLA7ZAhXrTtS0BGCx0R4Cr0tamAFohAtX6VLw_6OaXf80UU3MfZvZ5ZVNqVZnKVrrMVHGgnr5j6hp0CZILPjG4oVFF82hCs7bffjyZcJlHPvwzMrEbgff_h98dYI74wv11VP8B-0eZ4w |
CitedBy_id | crossref_primary_10_1038_s41428_023_00801_9 crossref_primary_10_1021_acs_macromol_4c00301 crossref_primary_10_1002_pi_6051 crossref_primary_10_1038_s41428_024_00885_x crossref_primary_10_1007_s10924_020_01793_w crossref_primary_10_1021_acs_chemmater_1c01019 crossref_primary_10_1039_D2PY00423B crossref_primary_10_1039_D2PY00554A crossref_primary_10_3390_polym12102292 crossref_primary_10_1021_acs_macromol_1c01680 crossref_primary_10_3390_gels6010002 crossref_primary_10_3390_ma13214822 crossref_primary_10_1002_adma_202309952 crossref_primary_10_1002_marc_202000558 crossref_primary_10_1007_s00396_021_04882_x crossref_primary_10_1295_kobunshi_73_1_25 crossref_primary_10_1021_acs_langmuir_1c02318 |
Cites_doi | 10.1016/0079-6700(93)90025-8 10.1039/C7PY01793F 10.1016/j.progpolymsci.2011.08.004 10.1021/acs.macromol.8b00841 10.1071/CH09311 10.1016/S0169-409X(01)00243-5 10.1039/C6PY01340F 10.1126/science.1247811 10.1002/pola.20978 10.3390/gels4010022 10.1039/C1PY00349F 10.1016/j.eurpolymj.2014.11.024 10.1002/pola.29176 10.1016/j.polymer.2012.12.069 10.1002/app.1991.070421210 10.1002/adma.201600514 10.1002/macp.201400478 10.1021/acsami.6b11112 10.1021/acs.macromol.7b02475 10.14723/tmrsj.43.71 10.1016/S1359-0294(03)00005-0 10.1021/ma971899g 10.1002/macp.200800575 10.1071/CH05072 10.1021/ja00540a026 10.1002/pola.20977 10.1021/acs.biomac.8b00015 10.1016/j.progpolymsci.2005.11.001 10.1002/pola.22994 10.1039/C6PY00848H 10.1016/j.apsusc.2018.08.214 10.1021/ma200700m 10.1063/1.447548 10.1016/j.progpolymsci.2007.05.018 10.1016/0079-6700(92)90023-R 10.1002/pola.25938 10.1021/acs.macromol.6b00798 10.1016/j.memsci.2011.02.004 10.1016/S0001-8686(99)00023-8 10.1021/ma0114077 10.1039/c2sm25168j 10.1021/acs.langmuir.7b00281 10.1016/j.eurpolymj.2016.09.046 10.1002/anie.201506663 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2019 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2019 |
DBID | AAYXX CITATION 7SR 8FD JG9 |
DOI | 10.1039/c9py01417a |
DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database Materials Research Database |
DatabaseTitle | CrossRef Materials Research Database Technology Research Database Engineered Materials Abstracts |
DatabaseTitleList | Materials Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1759-9962 |
EndPage | 613 |
ExternalDocumentID | 10_1039_C9PY01417A c9py01417a |
GroupedDBID | 0-7 0R 29O 4.4 705 7~J AAEMU AAGNR AAIWI AANOJ ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ASKNT AUDPV AZFZN BLAPV BSQNT C6K CKLOX DU5 EBS ECGLT EE0 EF- EJD HZ H~N IPNFZ J3I JG O-G O9- P2P RCNCU RIG RNS RPMJG RRC RSCEA SKF SKH SKJ SKM SKR SKZ SLC SLF 0R~ AAJAE AARTK AAWGC AAXHV AAYXX ABASK ABEMK ABJNI ABPDG ABXOH ADNWM AEFDR AENGV AESAV AETIL AFLYV AFOGI AFRZK AGEGJ AGRSR AHGCF AKBGW AKMSF ANUXI APEMP CITATION GGIMP H13 HZ~ RAOCF RVUXY 7SR 8FD JG9 M4U |
ID | FETCH-LOGICAL-c281t-aab9e49646875777cce411519324a90c1c3bfddeaa4c03feac829740ae8ccae73 |
ISSN | 1759-9954 |
IngestDate | Mon Jun 30 04:54:39 EDT 2025 Thu Apr 24 22:59:47 EDT 2025 Tue Jul 01 02:28:17 EDT 2025 Sat Jan 08 04:36:50 EST 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 45 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-aab9e49646875777cce411519324a90c1c3bfddeaa4c03feac829740ae8ccae73 |
Notes | 10.1039/c9py01417a Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1821-9022 |
PQID | 2315459532 |
PQPubID | 2047483 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2315459532 crossref_citationtrail_10_1039_C9PY01417A crossref_primary_10_1039_C9PY01417A rsc_primary_c9py01417a |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-12-07 |
PublicationDateYYYYMMDD | 2019-12-07 |
PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Polymer chemistry |
PublicationYear | 2019 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Zigmond (C9PY01417A-(cit23)/*[position()=1]) 2016; 8 Triftaridou (C9PY01417A-(cit15)/*[position()=1]) 2002; 35 Chaterji (C9PY01417A-(cit3)/*[position()=1]) 2007; 32 Moad (C9PY01417A-(cit38)/*[position()=1]) 2005; 58 Ulrich (C9PY01417A-(cit26)/*[position()=1]) 2018; 51 Ida (C9PY01417A-(cit44)/*[position()=1]) 2018; 43 Chandel (C9PY01417A-(cit22)/*[position()=1]) 2018; 19 Erdodi (C9PY01417A-(cit9)/*[position()=1]) 2006; 31 Guo (C9PY01417A-(cit35)/*[position()=1]) 2016; 28 Osada (C9PY01417A-(cit1)/*[position()=1]) 1993; 18 Moad (C9PY01417A-(cit39)/*[position()=1]) 2009; 62 Erdodi (C9PY01417A-(cit10)/*[position()=1]) 2005; 43 Bivigou-Koumba (C9PY01417A-(cit43)/*[position()=1]) 2009; 210 Halperin (C9PY01417A-(cit7)/*[position()=1]) 2015; 54 Pollak (C9PY01417A-(cit42)/*[position()=1]) 1980; 102 Kamata (C9PY01417A-(cit32)/*[position()=1]) 2012; 8 Kamata (C9PY01417A-(cit34)/*[position()=1]) 2014; 343 Gregory (C9PY01417A-(cit40)/*[position()=1]) 2012; 37 Kaneko (C9PY01417A-(cit29)/*[position()=1]) 1998; 31 Wang (C9PY01417A-(cit21)/*[position()=1]) 2019; 463 Cong (C9PY01417A-(cit31)/*[position()=1]) 2013; 54 Guzman (C9PY01417A-(cit24)/*[position()=1]) 2017; 33 Theato (C9PY01417A-(cit41)/*[position()=1]) 2008; 46 Caló (C9PY01417A-(cit27)/*[position()=1]) 2015; 65 Schild (C9PY01417A-(cit6)/*[position()=1]) 1992; 17 Kikuchi (C9PY01417A-(cit2)/*[position()=1]) 2002; 54 Ida (C9PY01417A-(cit33)/*[position()=1]) 2018; 4 Zheng (C9PY01417A-(cit30)/*[position()=1]) 2012; 50 Tobis (C9PY01417A-(cit18)/*[position()=1]) 2011; 372 Rikkou-Kalourkoti (C9PY01417A-(cit16)/*[position()=1]) 2012; 3 Kitiri (C9PY01417A-(cit17)/*[position()=1]) 2017; 8 Patrickios (C9PY01417A-(cit8)/*[position()=1]) 2003; 8 Fodor (C9PY01417A-(cit14)/*[position()=1]) 2016; 7 Schmidt (C9PY01417A-(cit19)/*[position()=1]) 2017; 88 Pelton (C9PY01417A-(cit4)/*[position()=1]) 2000; 85 Guo (C9PY01417A-(cit36)/*[position()=1]) 2016; 49 Apostolides (C9PY01417A-(cit25)/*[position()=1]) 2018; 51 Lai (C9PY01417A-(cit28)/*[position()=1]) 1991; 42 Kitiri (C9PY01417A-(cit20)/*[position()=1]) 2018; 56 Erdodi (C9PY01417A-(cit11)/*[position()=1]) 2005; 43 Kali (C9PY01417A-(cit13)/*[position()=1]) 2015; 216 Ida (C9PY01417A-(cit37)/*[position()=1]) 2018; 9 Fodor (C9PY01417A-(cit12)/*[position()=1]) 2011; 44 Hirokawa (C9PY01417A-(cit5)/*[position()=1]) 1984; 81 |
References_xml | – volume: 18 start-page: 187 year: 1993 ident: C9PY01417A-(cit1)/*[position()=1] publication-title: Prog. Polym. Sci. doi: 10.1016/0079-6700(93)90025-8 – volume: 9 start-page: 1701 year: 2018 ident: C9PY01417A-(cit37)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/C7PY01793F – volume: 37 start-page: 38 year: 2012 ident: C9PY01417A-(cit40)/*[position()=1] publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2011.08.004 – volume: 51 start-page: 5267 year: 2018 ident: C9PY01417A-(cit26)/*[position()=1] publication-title: Macromolecules doi: 10.1021/acs.macromol.8b00841 – volume: 62 start-page: 1402 year: 2009 ident: C9PY01417A-(cit39)/*[position()=1] publication-title: Aust. J. Chem. doi: 10.1071/CH09311 – volume: 54 start-page: 53 year: 2002 ident: C9PY01417A-(cit2)/*[position()=1] publication-title: Adv. Drug Delivery Rev. doi: 10.1016/S0169-409X(01)00243-5 – volume: 8 start-page: 245 year: 2017 ident: C9PY01417A-(cit17)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/C6PY01340F – volume: 343 start-page: 873 year: 2014 ident: C9PY01417A-(cit34)/*[position()=1] publication-title: Science doi: 10.1126/science.1247811 – volume: 43 start-page: 4953 year: 2005 ident: C9PY01417A-(cit10)/*[position()=1] publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/pola.20978 – volume: 4 start-page: 22 year: 2018 ident: C9PY01417A-(cit33)/*[position()=1] publication-title: Gels doi: 10.3390/gels4010022 – volume: 3 start-page: 105 year: 2012 ident: C9PY01417A-(cit16)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/C1PY00349F – volume: 65 start-page: 252 year: 2015 ident: C9PY01417A-(cit27)/*[position()=1] publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2014.11.024 – volume: 56 start-page: 2161 year: 2018 ident: C9PY01417A-(cit20)/*[position()=1] publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/pola.29176 – volume: 54 start-page: 1370 year: 2013 ident: C9PY01417A-(cit31)/*[position()=1] publication-title: Polymer doi: 10.1016/j.polymer.2012.12.069 – volume: 42 start-page: 3173 year: 1991 ident: C9PY01417A-(cit28)/*[position()=1] publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.1991.070421210 – volume: 28 start-page: 5857 year: 2016 ident: C9PY01417A-(cit35)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201600514 – volume: 216 start-page: 605 year: 2015 ident: C9PY01417A-(cit13)/*[position()=1] publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.201400478 – volume: 8 start-page: 33386 year: 2016 ident: C9PY01417A-(cit23)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b11112 – volume: 51 start-page: 2476 year: 2018 ident: C9PY01417A-(cit25)/*[position()=1] publication-title: Macromolecules doi: 10.1021/acs.macromol.7b02475 – volume: 43 start-page: 71 year: 2018 ident: C9PY01417A-(cit44)/*[position()=1] publication-title: Trans. Mater. Res. Soc. Jpn. doi: 10.14723/tmrsj.43.71 – volume: 8 start-page: 76 year: 2003 ident: C9PY01417A-(cit8)/*[position()=1] publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/S1359-0294(03)00005-0 – volume: 31 start-page: 6099 year: 1998 ident: C9PY01417A-(cit29)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma971899g – volume: 210 start-page: 565 year: 2009 ident: C9PY01417A-(cit43)/*[position()=1] publication-title: Macromol. Chem. Phys. doi: 10.1002/macp.200800575 – volume: 58 start-page: 379 year: 2005 ident: C9PY01417A-(cit38)/*[position()=1] publication-title: Aust. J. Chem. doi: 10.1071/CH05072 – volume: 102 start-page: 6324 year: 1980 ident: C9PY01417A-(cit42)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00540a026 – volume: 43 start-page: 4965 year: 2005 ident: C9PY01417A-(cit11)/*[position()=1] publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/pola.20977 – volume: 19 start-page: 1142 year: 2018 ident: C9PY01417A-(cit22)/*[position()=1] publication-title: Biomacromolecules doi: 10.1021/acs.biomac.8b00015 – volume: 31 start-page: 1 year: 2006 ident: C9PY01417A-(cit9)/*[position()=1] publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2005.11.001 – volume: 46 start-page: 6677 year: 2008 ident: C9PY01417A-(cit41)/*[position()=1] publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/pola.22994 – volume: 7 start-page: 5375 year: 2016 ident: C9PY01417A-(cit14)/*[position()=1] publication-title: Polym. Chem. doi: 10.1039/C6PY00848H – volume: 463 start-page: 1097 year: 2019 ident: C9PY01417A-(cit21)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.08.214 – volume: 44 start-page: 4496 year: 2011 ident: C9PY01417A-(cit12)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma200700m – volume: 81 start-page: 6379 year: 1984 ident: C9PY01417A-(cit5)/*[position()=1] publication-title: J. Chem. Phys. doi: 10.1063/1.447548 – volume: 32 start-page: 1083 year: 2007 ident: C9PY01417A-(cit3)/*[position()=1] publication-title: Prog. Polym. Sci. doi: 10.1016/j.progpolymsci.2007.05.018 – volume: 17 start-page: 163 year: 1992 ident: C9PY01417A-(cit6)/*[position()=1] publication-title: Prog. Polym. Sci. doi: 10.1016/0079-6700(92)90023-R – volume: 50 start-page: 1717 year: 2012 ident: C9PY01417A-(cit30)/*[position()=1] publication-title: J. Polym. Sci., Part A: Polym. Chem. doi: 10.1002/pola.25938 – volume: 49 start-page: 4295 year: 2016 ident: C9PY01417A-(cit36)/*[position()=1] publication-title: Macromolecules doi: 10.1021/acs.macromol.6b00798 – volume: 372 start-page: 219 year: 2011 ident: C9PY01417A-(cit18)/*[position()=1] publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.02.004 – volume: 85 start-page: 1 year: 2000 ident: C9PY01417A-(cit4)/*[position()=1] publication-title: Adv. Colloid Interface Sci. doi: 10.1016/S0001-8686(99)00023-8 – volume: 35 start-page: 2506 year: 2002 ident: C9PY01417A-(cit15)/*[position()=1] publication-title: Macromolecules doi: 10.1021/ma0114077 – volume: 8 start-page: 6876 year: 2012 ident: C9PY01417A-(cit32)/*[position()=1] publication-title: Soft Matter doi: 10.1039/c2sm25168j – volume: 33 start-page: 2900 year: 2017 ident: C9PY01417A-(cit24)/*[position()=1] publication-title: Langmuir doi: 10.1021/acs.langmuir.7b00281 – volume: 88 start-page: 562 year: 2017 ident: C9PY01417A-(cit19)/*[position()=1] publication-title: Eur. Polym. J. doi: 10.1016/j.eurpolymj.2016.09.046 – volume: 54 start-page: 15342 year: 2015 ident: C9PY01417A-(cit7)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201506663 |
SSID | ssj0000314236 |
Score | 2.3510718 |
Snippet | A designed amphiphilic conetwork (APCN) having thermoresponsive polymer chains is attractive for the development of novel stimuli-responsive materials with a... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 6122 |
SubjectTerms | Composition Crosslinking Domains Elongation Gelation Gels Hydrophilicity Low temperature Mechanical properties Modulus of elasticity Molecular weight Polymer chemistry Prepolymers Sharpness Swelling |
Title | Swelling and mechanical properties of thermoresponsive/hydrophilic conetworks with crosslinked domain structures prepared from various triblock precursors |
URI | https://www.proquest.com/docview/2315459532 |
Volume | 1 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67gFe0PiYGAxkCV5QFZYPp6kfRwVUTEOTtontqbIdh0ZdmyptNpU_hb-HP4w758Oh9GHwElWO47S-X3139t39CHkLLgBojthzBCgLhyVSOdLvcyeOuGDaE8wzNJ2nX_ujS_blKrzqdH61opaKlXyvfmzNK_kfqUIbyBWzZP9Bss2g0ACfQb5wBQnD9V4yPsedtzrLcKYxidfM-QJ32HMslVqFAOQYTlsGw95qeN9kHUMX3EtRGHdehoJXiW5Gb-K5LpiicTYT6bxXFpktYAisKVDGrJu8lFvwtDGGFmmzQCtO8bYqwIavzogqq_csu1nPdN5TNbtcA8jY2K7nk2yi00b2WZ7OCsN_1DtNp037SQqGrJia9hFm52WysDvneTYVd-bedbacpKtl8b1ob2l4ho-h5L6tVuEo5A4WqiuVVLttY-l2WxBlYWshBsPNbyl19JK2Kgw3wHqrQ352jRGvUVNy1Vbl3tCWTQyjOb0P-Ng-u0N2fXBW_C7ZPT758Plbs9eHFAG-YatsflldKTfgR3aAP20j6_Ds5DUbjbF6LvbIo8pdoccl9h6Tjp4_IQ-GtRyfkp81BilgkFoMUotBmiV0E4NHLQRSi0CKCKQtBNISgdQikNYIpIhAWiGQ1gikFoHPyOWnjxfDkVPxfTjKH3grRwjJNeN91keWhShSSjNwWNDFYIK7ylOBTEAdC8GUGyRgMmBeOHOFHsA6pKNgn3Tn8I2fEypj6XM54DxBGzQOhRQq0EEYM-nqfuIfkHf1TI9VVQwfOVluxn-L9YC8afouyhIwW3sd1gIbV0vEcgzOE3goPAzghfsgxOZ5xRdr85x4ca_RX5KH9o9ySLow6foVWMMr-boC228kScH7 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Swelling+and+mechanical+properties+of+thermoresponsive%2Fhydrophilic+conetworks+with+crosslinked+domain+structures+prepared+from+various+triblock+precursors&rft.jtitle=Polymer+chemistry&rft.au=Ida%2C+Shohei&rft.au=Morimura%2C+Miki&rft.au=Kitanaka%2C+Hironobu&rft.au=Hirokawa%2C+Yoshitsugu&rft.date=2019-12-07&rft.issn=1759-9954&rft.eissn=1759-9962&rft.volume=10&rft.issue=45&rft.spage=6122&rft.epage=6130&rft_id=info:doi/10.1039%2FC9PY01417A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C9PY01417A |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-9954&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-9954&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-9954&client=summon |