Swelling and mechanical properties of thermoresponsive/hydrophilic conetworks with crosslinked domain structures prepared from various triblock precursors

A designed amphiphilic conetwork (APCN) having thermoresponsive polymer chains is attractive for the development of novel stimuli-responsive materials with a controlled responsive behavior. We have recently proposed a novel APCN having crosslinked domain (CD) structures prepared by the post-polymeri...

Full description

Saved in:
Bibliographic Details
Published inPolymer chemistry Vol. 1; no. 45; pp. 6122 - 613
Main Authors Ida, Shohei, Morimura, Miki, Kitanaka, Hironobu, Hirokawa, Yoshitsugu, Kanaoka, Shokyoku
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 07.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A designed amphiphilic conetwork (APCN) having thermoresponsive polymer chains is attractive for the development of novel stimuli-responsive materials with a controlled responsive behavior. We have recently proposed a novel APCN having crosslinked domain (CD) structures prepared by the post-polymerization crosslinking of controlled triblock precursor polymers with reactive sites in the outer blocks. In the current study, we evaluated the effects of the structures of the triblock precursors including the sequence, molecular weight, and composition on the gelation reaction and the swelling properties of the obtained gels in detail. The gelation reaction and the volume at the swelling state at a low temperature were strongly affected by the molecular weight of the middle block of a precursor, whereas the temperature and the sharpness of the response were controlled by the composition of a precursor. Interestingly, the gel consisting of thermoresponsive CDs and hydrophilic bridging chains had improved elastic modulus and elongation ability upon heating in air without external water, probably because water flowed between the thermoresponsive CDs and the domains of the hydrophilic bridging chains in response to temperature change. Thermoresponsive conetworks with crosslinked domain structures were designed by the crosslinking of triblock polymers for responsive gel functioning without external water.
AbstractList A designed amphiphilic conetwork (APCN) having thermoresponsive polymer chains is attractive for the development of novel stimuli-responsive materials with a controlled responsive behavior. We have recently proposed a novel APCN having crosslinked domain (CD) structures prepared by the post-polymerization crosslinking of controlled triblock precursor polymers with reactive sites in the outer blocks. In the current study, we evaluated the effects of the structures of the triblock precursors including the sequence, molecular weight, and composition on the gelation reaction and the swelling properties of the obtained gels in detail. The gelation reaction and the volume at the swelling state at a low temperature were strongly affected by the molecular weight of the middle block of a precursor, whereas the temperature and the sharpness of the response were controlled by the composition of a precursor. Interestingly, the gel consisting of thermoresponsive CDs and hydrophilic bridging chains had improved elastic modulus and elongation ability upon heating in air without external water, probably because water flowed between the thermoresponsive CDs and the domains of the hydrophilic bridging chains in response to temperature change.
A designed amphiphilic conetwork (APCN) having thermoresponsive polymer chains is attractive for the development of novel stimuli-responsive materials with a controlled responsive behavior. We have recently proposed a novel APCN having crosslinked domain (CD) structures prepared by the post-polymerization crosslinking of controlled triblock precursor polymers with reactive sites in the outer blocks. In the current study, we evaluated the effects of the structures of the triblock precursors including the sequence, molecular weight, and composition on the gelation reaction and the swelling properties of the obtained gels in detail. The gelation reaction and the volume at the swelling state at a low temperature were strongly affected by the molecular weight of the middle block of a precursor, whereas the temperature and the sharpness of the response were controlled by the composition of a precursor. Interestingly, the gel consisting of thermoresponsive CDs and hydrophilic bridging chains had improved elastic modulus and elongation ability upon heating in air without external water, probably because water flowed between the thermoresponsive CDs and the domains of the hydrophilic bridging chains in response to temperature change. Thermoresponsive conetworks with crosslinked domain structures were designed by the crosslinking of triblock polymers for responsive gel functioning without external water.
Author Ida, Shohei
Kitanaka, Hironobu
Hirokawa, Yoshitsugu
Kanaoka, Shokyoku
Morimura, Miki
AuthorAffiliation Department of Materials Science
The University of Shiga Prefecture
AuthorAffiliation_xml – name: The University of Shiga Prefecture
– name: Department of Materials Science
Author_xml – sequence: 1
  givenname: Shohei
  surname: Ida
  fullname: Ida, Shohei
– sequence: 2
  givenname: Miki
  surname: Morimura
  fullname: Morimura, Miki
– sequence: 3
  givenname: Hironobu
  surname: Kitanaka
  fullname: Kitanaka, Hironobu
– sequence: 4
  givenname: Yoshitsugu
  surname: Hirokawa
  fullname: Hirokawa, Yoshitsugu
– sequence: 5
  givenname: Shokyoku
  surname: Kanaoka
  fullname: Kanaoka, Shokyoku
BookMark eNptkcFq3EAMhoeSQNMkl94LA70VtvF4xuudY1iathBIIemhJ6OV5Xqy9oyrGWfZV-nTdpINKZTqIoE-_ZL434gjHzwJ8VYVH1Wh7QXaaV8oo2p4JU5UXdmFtcvy6KWuzGtxHuN9kUMrU-rlifh9u6NhcP6nBN_KkbAH7xAGOXGYiJOjKEMnU088BqY4BR_dA130-zYDvRscSsxnpF3gbZQ7l3qJHGLMmltqZRtGcF7GxDOmOQtkYZqAc6vjMMoHYBfmKBO7zRBw-9jGmWPgeCaOOxginT_nU_H96tPd-svi-ubz1_Xl9QLLlUoLgI0lY5dmuaqruq4RyShVKatLA7ZAhXrTtS0BGCx0R4Cr0tamAFohAtX6VLw_6OaXf80UU3MfZvZ5ZVNqVZnKVrrMVHGgnr5j6hp0CZILPjG4oVFF82hCs7bffjyZcJlHPvwzMrEbgff_h98dYI74wv11VP8B-0eZ4w
CitedBy_id crossref_primary_10_1038_s41428_023_00801_9
crossref_primary_10_1021_acs_macromol_4c00301
crossref_primary_10_1002_pi_6051
crossref_primary_10_1038_s41428_024_00885_x
crossref_primary_10_1007_s10924_020_01793_w
crossref_primary_10_1021_acs_chemmater_1c01019
crossref_primary_10_1039_D2PY00423B
crossref_primary_10_1039_D2PY00554A
crossref_primary_10_3390_polym12102292
crossref_primary_10_1021_acs_macromol_1c01680
crossref_primary_10_3390_gels6010002
crossref_primary_10_3390_ma13214822
crossref_primary_10_1002_adma_202309952
crossref_primary_10_1002_marc_202000558
crossref_primary_10_1007_s00396_021_04882_x
crossref_primary_10_1295_kobunshi_73_1_25
crossref_primary_10_1021_acs_langmuir_1c02318
Cites_doi 10.1016/0079-6700(93)90025-8
10.1039/C7PY01793F
10.1016/j.progpolymsci.2011.08.004
10.1021/acs.macromol.8b00841
10.1071/CH09311
10.1016/S0169-409X(01)00243-5
10.1039/C6PY01340F
10.1126/science.1247811
10.1002/pola.20978
10.3390/gels4010022
10.1039/C1PY00349F
10.1016/j.eurpolymj.2014.11.024
10.1002/pola.29176
10.1016/j.polymer.2012.12.069
10.1002/app.1991.070421210
10.1002/adma.201600514
10.1002/macp.201400478
10.1021/acsami.6b11112
10.1021/acs.macromol.7b02475
10.14723/tmrsj.43.71
10.1016/S1359-0294(03)00005-0
10.1021/ma971899g
10.1002/macp.200800575
10.1071/CH05072
10.1021/ja00540a026
10.1002/pola.20977
10.1021/acs.biomac.8b00015
10.1016/j.progpolymsci.2005.11.001
10.1002/pola.22994
10.1039/C6PY00848H
10.1016/j.apsusc.2018.08.214
10.1021/ma200700m
10.1063/1.447548
10.1016/j.progpolymsci.2007.05.018
10.1016/0079-6700(92)90023-R
10.1002/pola.25938
10.1021/acs.macromol.6b00798
10.1016/j.memsci.2011.02.004
10.1016/S0001-8686(99)00023-8
10.1021/ma0114077
10.1039/c2sm25168j
10.1021/acs.langmuir.7b00281
10.1016/j.eurpolymj.2016.09.046
10.1002/anie.201506663
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2019
Copyright_xml – notice: Copyright Royal Society of Chemistry 2019
DBID AAYXX
CITATION
7SR
8FD
JG9
DOI 10.1039/c9py01417a
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
Materials Research Database
DatabaseTitle CrossRef
Materials Research Database
Technology Research Database
Engineered Materials Abstracts
DatabaseTitleList Materials Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1759-9962
EndPage 613
ExternalDocumentID 10_1039_C9PY01417A
c9py01417a
GroupedDBID 0-7
0R
29O
4.4
705
7~J
AAEMU
AAGNR
AAIWI
AANOJ
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CKLOX
DU5
EBS
ECGLT
EE0
EF-
EJD
HZ
H~N
IPNFZ
J3I
JG
O-G
O9-
P2P
RCNCU
RIG
RNS
RPMJG
RRC
RSCEA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
0R~
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABASK
ABEMK
ABJNI
ABPDG
ABXOH
ADNWM
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRZK
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ANUXI
APEMP
CITATION
GGIMP
H13
HZ~
RAOCF
RVUXY
7SR
8FD
JG9
M4U
ID FETCH-LOGICAL-c281t-aab9e49646875777cce411519324a90c1c3bfddeaa4c03feac829740ae8ccae73
ISSN 1759-9954
IngestDate Mon Jun 30 04:54:39 EDT 2025
Thu Apr 24 22:59:47 EDT 2025
Tue Jul 01 02:28:17 EDT 2025
Sat Jan 08 04:36:50 EST 2022
IsPeerReviewed true
IsScholarly true
Issue 45
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-aab9e49646875777cce411519324a90c1c3bfddeaa4c03feac829740ae8ccae73
Notes 10.1039/c9py01417a
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1821-9022
PQID 2315459532
PQPubID 2047483
PageCount 9
ParticipantIDs proquest_journals_2315459532
crossref_citationtrail_10_1039_C9PY01417A
crossref_primary_10_1039_C9PY01417A
rsc_primary_c9py01417a
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-12-07
PublicationDateYYYYMMDD 2019-12-07
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-07
  day: 07
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Polymer chemistry
PublicationYear 2019
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Zigmond (C9PY01417A-(cit23)/*[position()=1]) 2016; 8
Triftaridou (C9PY01417A-(cit15)/*[position()=1]) 2002; 35
Chaterji (C9PY01417A-(cit3)/*[position()=1]) 2007; 32
Moad (C9PY01417A-(cit38)/*[position()=1]) 2005; 58
Ulrich (C9PY01417A-(cit26)/*[position()=1]) 2018; 51
Ida (C9PY01417A-(cit44)/*[position()=1]) 2018; 43
Chandel (C9PY01417A-(cit22)/*[position()=1]) 2018; 19
Erdodi (C9PY01417A-(cit9)/*[position()=1]) 2006; 31
Guo (C9PY01417A-(cit35)/*[position()=1]) 2016; 28
Osada (C9PY01417A-(cit1)/*[position()=1]) 1993; 18
Moad (C9PY01417A-(cit39)/*[position()=1]) 2009; 62
Erdodi (C9PY01417A-(cit10)/*[position()=1]) 2005; 43
Bivigou-Koumba (C9PY01417A-(cit43)/*[position()=1]) 2009; 210
Halperin (C9PY01417A-(cit7)/*[position()=1]) 2015; 54
Pollak (C9PY01417A-(cit42)/*[position()=1]) 1980; 102
Kamata (C9PY01417A-(cit32)/*[position()=1]) 2012; 8
Kamata (C9PY01417A-(cit34)/*[position()=1]) 2014; 343
Gregory (C9PY01417A-(cit40)/*[position()=1]) 2012; 37
Kaneko (C9PY01417A-(cit29)/*[position()=1]) 1998; 31
Wang (C9PY01417A-(cit21)/*[position()=1]) 2019; 463
Cong (C9PY01417A-(cit31)/*[position()=1]) 2013; 54
Guzman (C9PY01417A-(cit24)/*[position()=1]) 2017; 33
Theato (C9PY01417A-(cit41)/*[position()=1]) 2008; 46
Caló (C9PY01417A-(cit27)/*[position()=1]) 2015; 65
Schild (C9PY01417A-(cit6)/*[position()=1]) 1992; 17
Kikuchi (C9PY01417A-(cit2)/*[position()=1]) 2002; 54
Ida (C9PY01417A-(cit33)/*[position()=1]) 2018; 4
Zheng (C9PY01417A-(cit30)/*[position()=1]) 2012; 50
Tobis (C9PY01417A-(cit18)/*[position()=1]) 2011; 372
Rikkou-Kalourkoti (C9PY01417A-(cit16)/*[position()=1]) 2012; 3
Kitiri (C9PY01417A-(cit17)/*[position()=1]) 2017; 8
Patrickios (C9PY01417A-(cit8)/*[position()=1]) 2003; 8
Fodor (C9PY01417A-(cit14)/*[position()=1]) 2016; 7
Schmidt (C9PY01417A-(cit19)/*[position()=1]) 2017; 88
Pelton (C9PY01417A-(cit4)/*[position()=1]) 2000; 85
Guo (C9PY01417A-(cit36)/*[position()=1]) 2016; 49
Apostolides (C9PY01417A-(cit25)/*[position()=1]) 2018; 51
Lai (C9PY01417A-(cit28)/*[position()=1]) 1991; 42
Kitiri (C9PY01417A-(cit20)/*[position()=1]) 2018; 56
Erdodi (C9PY01417A-(cit11)/*[position()=1]) 2005; 43
Kali (C9PY01417A-(cit13)/*[position()=1]) 2015; 216
Ida (C9PY01417A-(cit37)/*[position()=1]) 2018; 9
Fodor (C9PY01417A-(cit12)/*[position()=1]) 2011; 44
Hirokawa (C9PY01417A-(cit5)/*[position()=1]) 1984; 81
References_xml – volume: 18
  start-page: 187
  year: 1993
  ident: C9PY01417A-(cit1)/*[position()=1]
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/0079-6700(93)90025-8
– volume: 9
  start-page: 1701
  year: 2018
  ident: C9PY01417A-(cit37)/*[position()=1]
  publication-title: Polym. Chem.
  doi: 10.1039/C7PY01793F
– volume: 37
  start-page: 38
  year: 2012
  ident: C9PY01417A-(cit40)/*[position()=1]
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2011.08.004
– volume: 51
  start-page: 5267
  year: 2018
  ident: C9PY01417A-(cit26)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.8b00841
– volume: 62
  start-page: 1402
  year: 2009
  ident: C9PY01417A-(cit39)/*[position()=1]
  publication-title: Aust. J. Chem.
  doi: 10.1071/CH09311
– volume: 54
  start-page: 53
  year: 2002
  ident: C9PY01417A-(cit2)/*[position()=1]
  publication-title: Adv. Drug Delivery Rev.
  doi: 10.1016/S0169-409X(01)00243-5
– volume: 8
  start-page: 245
  year: 2017
  ident: C9PY01417A-(cit17)/*[position()=1]
  publication-title: Polym. Chem.
  doi: 10.1039/C6PY01340F
– volume: 343
  start-page: 873
  year: 2014
  ident: C9PY01417A-(cit34)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1247811
– volume: 43
  start-page: 4953
  year: 2005
  ident: C9PY01417A-(cit10)/*[position()=1]
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/pola.20978
– volume: 4
  start-page: 22
  year: 2018
  ident: C9PY01417A-(cit33)/*[position()=1]
  publication-title: Gels
  doi: 10.3390/gels4010022
– volume: 3
  start-page: 105
  year: 2012
  ident: C9PY01417A-(cit16)/*[position()=1]
  publication-title: Polym. Chem.
  doi: 10.1039/C1PY00349F
– volume: 65
  start-page: 252
  year: 2015
  ident: C9PY01417A-(cit27)/*[position()=1]
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2014.11.024
– volume: 56
  start-page: 2161
  year: 2018
  ident: C9PY01417A-(cit20)/*[position()=1]
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/pola.29176
– volume: 54
  start-page: 1370
  year: 2013
  ident: C9PY01417A-(cit31)/*[position()=1]
  publication-title: Polymer
  doi: 10.1016/j.polymer.2012.12.069
– volume: 42
  start-page: 3173
  year: 1991
  ident: C9PY01417A-(cit28)/*[position()=1]
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.1991.070421210
– volume: 28
  start-page: 5857
  year: 2016
  ident: C9PY01417A-(cit35)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600514
– volume: 216
  start-page: 605
  year: 2015
  ident: C9PY01417A-(cit13)/*[position()=1]
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.201400478
– volume: 8
  start-page: 33386
  year: 2016
  ident: C9PY01417A-(cit23)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b11112
– volume: 51
  start-page: 2476
  year: 2018
  ident: C9PY01417A-(cit25)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.7b02475
– volume: 43
  start-page: 71
  year: 2018
  ident: C9PY01417A-(cit44)/*[position()=1]
  publication-title: Trans. Mater. Res. Soc. Jpn.
  doi: 10.14723/tmrsj.43.71
– volume: 8
  start-page: 76
  year: 2003
  ident: C9PY01417A-(cit8)/*[position()=1]
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/S1359-0294(03)00005-0
– volume: 31
  start-page: 6099
  year: 1998
  ident: C9PY01417A-(cit29)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma971899g
– volume: 210
  start-page: 565
  year: 2009
  ident: C9PY01417A-(cit43)/*[position()=1]
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/macp.200800575
– volume: 58
  start-page: 379
  year: 2005
  ident: C9PY01417A-(cit38)/*[position()=1]
  publication-title: Aust. J. Chem.
  doi: 10.1071/CH05072
– volume: 102
  start-page: 6324
  year: 1980
  ident: C9PY01417A-(cit42)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00540a026
– volume: 43
  start-page: 4965
  year: 2005
  ident: C9PY01417A-(cit11)/*[position()=1]
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/pola.20977
– volume: 19
  start-page: 1142
  year: 2018
  ident: C9PY01417A-(cit22)/*[position()=1]
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.8b00015
– volume: 31
  start-page: 1
  year: 2006
  ident: C9PY01417A-(cit9)/*[position()=1]
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2005.11.001
– volume: 46
  start-page: 6677
  year: 2008
  ident: C9PY01417A-(cit41)/*[position()=1]
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/pola.22994
– volume: 7
  start-page: 5375
  year: 2016
  ident: C9PY01417A-(cit14)/*[position()=1]
  publication-title: Polym. Chem.
  doi: 10.1039/C6PY00848H
– volume: 463
  start-page: 1097
  year: 2019
  ident: C9PY01417A-(cit21)/*[position()=1]
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2018.08.214
– volume: 44
  start-page: 4496
  year: 2011
  ident: C9PY01417A-(cit12)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma200700m
– volume: 81
  start-page: 6379
  year: 1984
  ident: C9PY01417A-(cit5)/*[position()=1]
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.447548
– volume: 32
  start-page: 1083
  year: 2007
  ident: C9PY01417A-(cit3)/*[position()=1]
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/j.progpolymsci.2007.05.018
– volume: 17
  start-page: 163
  year: 1992
  ident: C9PY01417A-(cit6)/*[position()=1]
  publication-title: Prog. Polym. Sci.
  doi: 10.1016/0079-6700(92)90023-R
– volume: 50
  start-page: 1717
  year: 2012
  ident: C9PY01417A-(cit30)/*[position()=1]
  publication-title: J. Polym. Sci., Part A: Polym. Chem.
  doi: 10.1002/pola.25938
– volume: 49
  start-page: 4295
  year: 2016
  ident: C9PY01417A-(cit36)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/acs.macromol.6b00798
– volume: 372
  start-page: 219
  year: 2011
  ident: C9PY01417A-(cit18)/*[position()=1]
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2011.02.004
– volume: 85
  start-page: 1
  year: 2000
  ident: C9PY01417A-(cit4)/*[position()=1]
  publication-title: Adv. Colloid Interface Sci.
  doi: 10.1016/S0001-8686(99)00023-8
– volume: 35
  start-page: 2506
  year: 2002
  ident: C9PY01417A-(cit15)/*[position()=1]
  publication-title: Macromolecules
  doi: 10.1021/ma0114077
– volume: 8
  start-page: 6876
  year: 2012
  ident: C9PY01417A-(cit32)/*[position()=1]
  publication-title: Soft Matter
  doi: 10.1039/c2sm25168j
– volume: 33
  start-page: 2900
  year: 2017
  ident: C9PY01417A-(cit24)/*[position()=1]
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.7b00281
– volume: 88
  start-page: 562
  year: 2017
  ident: C9PY01417A-(cit19)/*[position()=1]
  publication-title: Eur. Polym. J.
  doi: 10.1016/j.eurpolymj.2016.09.046
– volume: 54
  start-page: 15342
  year: 2015
  ident: C9PY01417A-(cit7)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201506663
SSID ssj0000314236
Score 2.3510718
Snippet A designed amphiphilic conetwork (APCN) having thermoresponsive polymer chains is attractive for the development of novel stimuli-responsive materials with a...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6122
SubjectTerms Composition
Crosslinking
Domains
Elongation
Gelation
Gels
Hydrophilicity
Low temperature
Mechanical properties
Modulus of elasticity
Molecular weight
Polymer chemistry
Prepolymers
Sharpness
Swelling
Title Swelling and mechanical properties of thermoresponsive/hydrophilic conetworks with crosslinked domain structures prepared from various triblock precursors
URI https://www.proquest.com/docview/2315459532
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67gFe0PiYGAxkCV5QFZYPp6kfRwVUTEOTtontqbIdh0ZdmyptNpU_hb-HP4w758Oh9GHwElWO47S-X3139t39CHkLLgBojthzBCgLhyVSOdLvcyeOuGDaE8wzNJ2nX_ujS_blKrzqdH61opaKlXyvfmzNK_kfqUIbyBWzZP9Bss2g0ACfQb5wBQnD9V4yPsedtzrLcKYxidfM-QJ32HMslVqFAOQYTlsGw95qeN9kHUMX3EtRGHdehoJXiW5Gb-K5LpiicTYT6bxXFpktYAisKVDGrJu8lFvwtDGGFmmzQCtO8bYqwIavzogqq_csu1nPdN5TNbtcA8jY2K7nk2yi00b2WZ7OCsN_1DtNp037SQqGrJia9hFm52WysDvneTYVd-bedbacpKtl8b1ob2l4ho-h5L6tVuEo5A4WqiuVVLttY-l2WxBlYWshBsPNbyl19JK2Kgw3wHqrQ352jRGvUVNy1Vbl3tCWTQyjOb0P-Ng-u0N2fXBW_C7ZPT758Plbs9eHFAG-YatsflldKTfgR3aAP20j6_Ds5DUbjbF6LvbIo8pdoccl9h6Tjp4_IQ-GtRyfkp81BilgkFoMUotBmiV0E4NHLQRSi0CKCKQtBNISgdQikNYIpIhAWiGQ1gikFoHPyOWnjxfDkVPxfTjKH3grRwjJNeN91keWhShSSjNwWNDFYIK7ylOBTEAdC8GUGyRgMmBeOHOFHsA6pKNgn3Tn8I2fEypj6XM54DxBGzQOhRQq0EEYM-nqfuIfkHf1TI9VVQwfOVluxn-L9YC8afouyhIwW3sd1gIbV0vEcgzOE3goPAzghfsgxOZ5xRdr85x4ca_RX5KH9o9ySLow6foVWMMr-boC228kScH7
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Swelling+and+mechanical+properties+of+thermoresponsive%2Fhydrophilic+conetworks+with+crosslinked+domain+structures+prepared+from+various+triblock+precursors&rft.jtitle=Polymer+chemistry&rft.au=Ida%2C+Shohei&rft.au=Morimura%2C+Miki&rft.au=Kitanaka%2C+Hironobu&rft.au=Hirokawa%2C+Yoshitsugu&rft.date=2019-12-07&rft.issn=1759-9954&rft.eissn=1759-9962&rft.volume=10&rft.issue=45&rft.spage=6122&rft.epage=6130&rft_id=info:doi/10.1039%2FC9PY01417A&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_C9PY01417A
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1759-9954&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1759-9954&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1759-9954&client=summon