Swelling and mechanical properties of thermoresponsive/hydrophilic conetworks with crosslinked domain structures prepared from various triblock precursors

A designed amphiphilic conetwork (APCN) having thermoresponsive polymer chains is attractive for the development of novel stimuli-responsive materials with a controlled responsive behavior. We have recently proposed a novel APCN having crosslinked domain (CD) structures prepared by the post-polymeri...

Full description

Saved in:
Bibliographic Details
Published inPolymer chemistry Vol. 1; no. 45; pp. 6122 - 613
Main Authors Ida, Shohei, Morimura, Miki, Kitanaka, Hironobu, Hirokawa, Yoshitsugu, Kanaoka, Shokyoku
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 07.12.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A designed amphiphilic conetwork (APCN) having thermoresponsive polymer chains is attractive for the development of novel stimuli-responsive materials with a controlled responsive behavior. We have recently proposed a novel APCN having crosslinked domain (CD) structures prepared by the post-polymerization crosslinking of controlled triblock precursor polymers with reactive sites in the outer blocks. In the current study, we evaluated the effects of the structures of the triblock precursors including the sequence, molecular weight, and composition on the gelation reaction and the swelling properties of the obtained gels in detail. The gelation reaction and the volume at the swelling state at a low temperature were strongly affected by the molecular weight of the middle block of a precursor, whereas the temperature and the sharpness of the response were controlled by the composition of a precursor. Interestingly, the gel consisting of thermoresponsive CDs and hydrophilic bridging chains had improved elastic modulus and elongation ability upon heating in air without external water, probably because water flowed between the thermoresponsive CDs and the domains of the hydrophilic bridging chains in response to temperature change. Thermoresponsive conetworks with crosslinked domain structures were designed by the crosslinking of triblock polymers for responsive gel functioning without external water.
Bibliography:10.1039/c9py01417a
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1759-9954
1759-9962
DOI:10.1039/c9py01417a