Low-cost transition metal-nitrogen-carbon electrocatalysts for the oxygen reduction reaction: operating conditions from aqueous electrolytes to fuel cells
After decades of effort, the performance of low-cost transition metal-nitrogen-carbon (M-N-C) catalysts has been significantly improved, positioning them as promising catalysts for the oxygen reduction reaction in proton-exchange-membrane fuel cells (PEMFCs). Despite this progress, compared to tradi...
Saved in:
Published in | Sustainable energy & fuels Vol. 8; no. 2; pp. 178 - 191 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Royal Society of Chemistry
16.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | After decades of effort, the performance of low-cost transition metal-nitrogen-carbon (M-N-C) catalysts has been significantly improved, positioning them as promising catalysts for the oxygen reduction reaction in proton-exchange-membrane fuel cells (PEMFCs). Despite this progress, compared to traditional commercial Pt/C catalysts, the practical application of M-N-C catalysts in PEMFCs is hindered by their inferior performance in acidic environments. In this perspective, we first summarize the current status of M-N-C catalysts in terms of activity and stability, and compare their performance with that of Pt/C catalysts. Then we discuss the fundamental research challenges associated with M-N-C catalysts, which are primarily related to (i) conducting basic research with tests exclusively using oversimplified aqueous electrolytes that limits exploration in practical fuel cell environments; (ii) lacking operando characterization methods under fuel cell working conditions; and (iii) the complexity of catalyst structures and fuel cell operating environments causing difficulty in M-N-C catalyst research. Lastly, we propose key advances that need to be made in the future to address these fundamental challenges, including the rational design of fit-for-purpose catalysts based on more cost-effective and efficient modelling, preparing model/quasi-model catalysts with defined and controllable structures, and developing operando characterization techniques for PEMFCs. By combined study using model/quasi-model catalysts, operando characterization methods and atomistic modeling, we can deeply understand the "structure-performance" relationship of the catalysts at various scales and develop next generation M-N-C catalysts that can meet the increased demand for PEMFCs.
The rational design of M-N-C oxygen reduction catalysts for fuel cells. |
---|---|
AbstractList | After decades of effort, the performance of low-cost transition metal-nitrogen-carbon (M-N-C) catalysts has been significantly improved, positioning them as promising catalysts for the oxygen reduction reaction in proton-exchange-membrane fuel cells (PEMFCs). Despite this progress, compared to traditional commercial Pt/C catalysts, the practical application of M-N-C catalysts in PEMFCs is hindered by their inferior performance in acidic environments. In this perspective, we first summarize the current status of M-N-C catalysts in terms of activity and stability, and compare their performance with that of Pt/C catalysts. Then we discuss the fundamental research challenges associated with M-N-C catalysts, which are primarily related to (i) conducting basic research with tests exclusively using oversimplified aqueous electrolytes that limits exploration in practical fuel cell environments; (ii) lacking operando characterization methods under fuel cell working conditions; and (iii) the complexity of catalyst structures and fuel cell operating environments causing difficulty in M-N-C catalyst research. Lastly, we propose key advances that need to be made in the future to address these fundamental challenges, including the rational design of fit-for-purpose catalysts based on more cost-effective and efficient modelling, preparing model/quasi-model catalysts with defined and controllable structures, and developing operando characterization techniques for PEMFCs. By combined study using model/quasi-model catalysts, operando characterization methods and atomistic modeling, we can deeply understand the "structure-performance" relationship of the catalysts at various scales and develop next generation M-N-C catalysts that can meet the increased demand for PEMFCs.
The rational design of M-N-C oxygen reduction catalysts for fuel cells. After decades of effort, the performance of low-cost transition metal–nitrogen–carbon (M–N–C) catalysts has been significantly improved, positioning them as promising catalysts for the oxygen reduction reaction in proton-exchange-membrane fuel cells (PEMFCs). Despite this progress, compared to traditional commercial Pt/C catalysts, the practical application of M–N–C catalysts in PEMFCs is hindered by their inferior performance in acidic environments. In this perspective, we first summarize the current status of M–N–C catalysts in terms of activity and stability, and compare their performance with that of Pt/C catalysts. Then we discuss the fundamental research challenges associated with M–N–C catalysts, which are primarily related to (i) conducting basic research with tests exclusively using oversimplified aqueous electrolytes that limits exploration in practical fuel cell environments; (ii) lacking operando characterization methods under fuel cell working conditions; and (iii) the complexity of catalyst structures and fuel cell operating environments causing difficulty in M–N–C catalyst research. Lastly, we propose key advances that need to be made in the future to address these fundamental challenges, including the rational design of fit-for-purpose catalysts based on more cost-effective and efficient modelling, preparing model/quasi-model catalysts with defined and controllable structures, and developing operando characterization techniques for PEMFCs. By combined study using model/quasi-model catalysts, operando characterization methods and atomistic modeling, we can deeply understand the “structure-performance” relationship of the catalysts at various scales and develop next generation M–N–C catalysts that can meet the increased demand for PEMFCs. |
Author | Zhou, Zhi-You Lin, Wen-Feng Sun, Shi-Gang Cui, Li-Ting Wang, Yu-Cheng |
AuthorAffiliation | State Key Laboratory of Physical Chemistry of Solid Surfaces Department of Chemical Engineering Xiamen University College of Chemistry and Chemical Engineering Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) Loughborough University |
AuthorAffiliation_xml | – sequence: 0 name: State Key Laboratory of Physical Chemistry of Solid Surfaces – sequence: 0 name: Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM) – sequence: 0 name: College of Chemistry and Chemical Engineering – sequence: 0 name: Loughborough University – sequence: 0 name: Xiamen University – sequence: 0 name: Department of Chemical Engineering |
Author_xml | – sequence: 1 givenname: Li-Ting surname: Cui fullname: Cui, Li-Ting – sequence: 2 givenname: Yu-Cheng surname: Wang fullname: Wang, Yu-Cheng – sequence: 3 givenname: Zhi-You surname: Zhou fullname: Zhou, Zhi-You – sequence: 4 givenname: Wen-Feng surname: Lin fullname: Lin, Wen-Feng – sequence: 5 givenname: Shi-Gang surname: Sun fullname: Sun, Shi-Gang |
BookMark | eNptkV1LwzAUhoNMcM7deC8EvBOqSdoujXdjzg8YeKFelzQ9nR1dMpMU7V_x15p1fiFe5XDO877JyXuIBtpoQOiYknNKYnFRxg4IZTyVe2jIYpFFiSBs8Ks-QGPnVoQQRlnCUj5E7wvzGinjPPZWalf72mi8Bi-bSNfemiXoSElbhC40oEJHyTDsnHe4Mhb7Z8DmrQsYtlC2qtdbkH1xic0GrPS1XmJldNm7B501ayxfWjCt-3JtOg8Oe4OrFhqsoGncEdqvZONg_HmO0NP1_HF2Gy3ub-5m00WkWEZ9JHlWqCRTkjGWgeAMKC3TuEpSxsuEFjylQLIsmdBJWfEUigJkykEwWTEBdBKP0OnOd2NNeJTz-cq0VocrcyZoSgkXExEosqOUNc5ZqHJVe7ldKHxc3eSU5NsQ8qv4Yd6HMA2Ssz-Sja3X0nb_wyc72Dr1zf0kGn8Ax1OXng |
CitedBy_id | crossref_primary_10_1002_macp_202400092 |
Cites_doi | 10.1126/science.1170051 10.1002/aenm.202103588 10.1021/jacs.1c09508 10.1002/anie.201907002 10.1002/anie.202219188 10.1039/D2NR03687H 10.1016/j.memsci.2020.118040 10.1002/anie.201912275 10.1016/j.apcatb.2020.119437 10.1021/acscatal.1c01473 10.1038/s41467-020-18062-y 10.1002/chem.202002427 10.1039/C9CS00903E 10.1038/s41563-019-0356-x 10.1021/acs.chemrev.7b00335 10.1073/pnas.1800771115 10.1038/s41563-021-01030-2 10.1126/science.1200832 10.1002/anie.201912451 10.1149/1.2050072 10.1038/s41929-022-00776-5 10.1126/science.aau0630 10.1016/j.rser.2022.112558 10.1016/j.mtener.2022.101017 10.1038/nmat4367 10.1021/acsnano.0c10637 10.1039/C4EE00370E 10.1038/s41467-022-29357-7 10.1002/anie.201503159 10.1039/C9EE03027A 10.1021/acsami.1c14709 10.1126/sciadv.add8873 10.1038/ncomms1427 10.1016/j.chempr.2020.10.027 10.1021/acscatal.9b02583 10.1126/science.aad0832 10.1016/j.apcatb.2022.121290 10.1016/j.apenergy.2023.121360 10.1002/adma.201800588 10.1021/acscatal.2c03216 10.1126/science.aan2255 10.1021/acsaem.0c00255 10.1002/adma.202101038 10.1021/jacsau.1c00309 10.1016/j.gee.2021.11.005 10.1039/D3SE00537B 10.1002/adfm.202215021 10.1002/adfm.201970332 10.1002/adma.202211398 10.1021/acscatal.6b02702 10.1002/anie.201504903 10.1038/s41929-019-0297-4 10.1002/adma.201604556 10.1038/nchem.1095 10.1002/anie.201709597 10.1016/j.nanoen.2020.104547 10.1021/jacs.9b09234 10.1016/j.checat.2021.09.012 10.1016/j.nanoen.2017.10.051 10.1021/acs.chemrev.2c00515 10.1021/jacs.0c10636 10.1002/anie.201909312 10.1021/jacs.2c08600 10.1038/s41560-021-00824-7 10.1002/smtd.201700395 10.1002/anie.201706602 10.1002/cey2.47 10.1021/cs300228p 10.1021/acscatal.6b00643 10.1038/s41929-017-0008-y 10.1038/nature11115 10.1038/ncomms5973 10.1039/D2EE03169H 10.1002/anie.201702473 10.1038/2011212a0 10.1002/cey2.135 10.1021/acscatal.0c03496 10.1149/2.0371907jes 10.1038/s41467-022-30520-3 10.1038/s41929-018-0164-8 10.1021/acscatal.2c02146 10.1021/acscatal.0c04789 10.1021/am900219g 10.1021/jacs.2c05779 10.1016/j.apcatb.2019.117849 10.1007/BF01039385 10.1021/acs.jpclett.6b00216 10.1038/s41929-020-00546-1 10.1073/pnas.1507159112 10.1038/s44160-022-00129-x 10.1038/nchem.367 10.1039/C9TA03518D 10.1002/anie.201703864 10.1038/s41929-018-0146-x 10.1016/j.cej.2022.135320 10.1039/D2EE00061J 10.1038/s41929-022-00772-9 10.1038/s41929-019-0237-3 10.1002/anie.201500569 10.1016/j.elecom.2018.01.011 10.1021/acsenergylett.8b00516 10.1002/advs.202102209 10.1039/c2ee21802j 10.1038/s41560-022-01098-3 10.1021/nn901850u 10.1002/aenm.202102688 10.1016/j.jpowsour.2015.03.047 10.1038/s41557-021-00734-x 10.1002/smll.202105329 10.1038/s41586-021-03482-7 10.1021/jacs.1c10814 10.1038/s41929-022-00778-3 10.1038/s41929-022-00846-8 10.1021/jp2042526 10.1038/s41467-020-18969-6 10.1149/1945-7111/abdc64 10.1016/j.jcat.2019.04.028 10.1038/s41560-022-01062-1 10.1016/j.apcatb.2019.118523 10.3866/PKU.WHXB201702092 10.1002/celc.201700939 10.1002/adma.202202544 10.1002/aenm.202101222 10.1039/D2TA03669J 10.1039/C6EE01867J 10.1002/anie.202006928 10.1126/sciadv.aar7180 10.1016/S1872-2067(21)63993-1 10.1002/celc.202000351 10.1002/anie.202014711 10.1126/science.1172083 10.1126/science.aal3303 10.1002/adfm.202102420 10.1038/s41929-018-0182-6 10.1016/j.asems.2022.100006 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2024 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2024 |
DBID | AAYXX CITATION 7QO 7SP 7ST 7U6 8FD C1K FR3 L7M P64 |
DOI | 10.1039/d3se01275a |
DatabaseName | CrossRef Biotechnology Research Abstracts Electronics & Communications Abstracts Environment Abstracts Sustainability Science Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef Biotechnology Research Abstracts Technology Research Database Sustainability Science Abstracts Electronics & Communications Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | Biotechnology Research Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2398-4902 |
EndPage | 191 |
ExternalDocumentID | 10_1039_D3SE01275A d3se01275a |
GroupedDBID | 0R~ AAEMU AAIWI AAJAE AANOJ AARTK AAXHV ABASK ABDVN ABPDG ABRYZ AENGV AETIL AFOGI AGEGJ AGRSR AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP BLAPV C6K EBS ECGLT GGIMP H13 O9- OK1 RAOCF RCNCU RRC RSCEA RVUXY AAYXX ABJNI AFRZK AKMSF CITATION 7QO 7SP 7ST 7U6 8FD C1K FR3 L7M P64 |
ID | FETCH-LOGICAL-c281t-a78bc48ca2228e972e11d53f4527d41b751e0884616df75ebbea57e92af29e163 |
ISSN | 2398-4902 |
IngestDate | Mon Jun 30 11:56:08 EDT 2025 Tue Jul 01 01:58:21 EDT 2025 Thu Apr 24 23:02:15 EDT 2025 Tue Dec 17 20:58:29 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-a78bc48ca2228e972e11d53f4527d41b751e0884616df75ebbea57e92af29e163 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2327-4090 0000-0002-3356-3403 0000-0001-5181-0642 0000-0002-4256-2058 |
PQID | 2915107969 |
PQPubID | 2048882 |
PageCount | 14 |
ParticipantIDs | crossref_citationtrail_10_1039_D3SE01275A proquest_journals_2915107969 rsc_primary_d3se01275a crossref_primary_10_1039_D3SE01275A |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-16 |
PublicationDateYYYYMMDD | 2024-01-16 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-16 day: 16 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Sustainable energy & fuels |
PublicationYear | 2024 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Gewirth (D3SE01275A/cit21/1) 2018; 118 Liu (D3SE01275A/cit97/1) 2020; 142 Wang (D3SE01275A/cit29/1) 2015; 54 Li (D3SE01275A/cit77/1) 2018; 2 Wang (D3SE01275A/cit71/1) 2018; 3 Zhu (D3SE01275A/cit18/1) 2017; 56 Li (D3SE01275A/cit81/1) 2019; 18 Ma (D3SE01275A/cit36/1) 2021; 8 Zhong (D3SE01275A/cit94/1) 2019; 58 Wan (D3SE01275A/cit100/1) 2022; 12 Zhou (D3SE01275A/cit118/1) 2021; 11 Qiu (D3SE01275A/cit88/1) 2022; 43 Chen (D3SE01275A/cit123/1) 2022; 13 Wang (D3SE01275A/cit15/1) 2017; 33 Herranz (D3SE01275A/cit74/1) 2011; 115 Shen (D3SE01275A/cit130/1) 2017; 56 Nabae (D3SE01275A/cit91/1) 2021; 168 Wu (D3SE01275A/cit111/1) 2022; 1 Ding (D3SE01275A/cit126/1) 2020; 59 Ding (D3SE01275A/cit125/1) 2021; 11 Chen (D3SE01275A/cit131/1) 2019; 256 Wan (D3SE01275A/cit30/1) 2019; 2 Kim (D3SE01275A/cit3/1) 1995; 142 Wu (D3SE01275A/cit78/1) 2022; 144 Xia (D3SE01275A/cit51/1) 2019; 29 Jasinski (D3SE01275A/cit25/1) 1964; 201 Yin (D3SE01275A/cit35/1) 2017; 77 Santori (D3SE01275A/cit70/1) 2019; 166 Yuan Li (D3SE01275A/cit17/1) 2023; 29 Sun (D3SE01275A/cit14/1) 2023; 7 Fei (D3SE01275A/cit65/1) 2018; 1 Chen (D3SE01275A/cit95/1) 2020; 11 Yan (D3SE01275A/cit115/1) 2020; 2 Long Huang (D3SE01275A/cit10/1) 2022; 28 Yu (D3SE01275A/cit92/1) 2021; 280 Yang (D3SE01275A/cit86/1) 2021; 11 Lazaridis (D3SE01275A/cit56/1) 2022; 5 Jiao (D3SE01275A/cit7/1) 2021; 595 Liang (D3SE01275A/cit102/1) 2014; 5 Zhao (D3SE01275A/cit83/1) 2023; 123 Banham (D3SE01275A/cit4/1) 2018; 4 Xia (D3SE01275A/cit57/1) 2021; 13 Xie (D3SE01275A/cit135/1) 2021; 33 Guo (D3SE01275A/cit46/1) 2021; 15 Kumar (D3SE01275A/cit76/1) 2020; 59 Li (D3SE01275A/cit134/1) 2018; 1 Yang (D3SE01275A/cit66/1) 2022; 144 Li (D3SE01275A/cit41/1) 2021 Zhai (D3SE01275A/cit127/1) 2022; 7 Xue-Ping Qin (D3SE01275A/cit119/1) 2021; 27 Xiao (D3SE01275A/cit52/1) 2019; 141 Zhao (D3SE01275A/cit128/1) 2023; 345 Cui (D3SE01275A/cit108/1) 2019; 7 Ohyama (D3SE01275A/cit99/1) 2021; 1 Banham (D3SE01275A/cit24/1) 2015; 285 Wan (D3SE01275A/cit113/1) 2021; 13 Han (D3SE01275A/cit114/1) 2022; 13 Lefevre (D3SE01275A/cit27/1) 2009; 324 Choi (D3SE01275A/cit75/1) 2015; 54 Jiao (D3SE01275A/cit16/1) 2022; 14 Masa (D3SE01275A/cit85/1) 2015; 54 Jaouen (D3SE01275A/cit55/1) 2009; 1 Cui (D3SE01275A/cit68/1) 2020; 3 Wu (D3SE01275A/cit133/1) 2016; 9 Greeley (D3SE01275A/cit13/1) 2009; 1 Zhou (D3SE01275A/cit43/1) 2021; 31 Zhao (D3SE01275A/cit96/1) 2022; 12 Gupta (D3SE01275A/cit26/1) 1989; 19 Liu (D3SE01275A/cit64/1) 2023; 35 Jiao (D3SE01275A/cit44/1) 2021; 20 Li (D3SE01275A/cit40/1) 2019; 58 Yan (D3SE01275A/cit137/1) 2021; 3 Fan (D3SE01275A/cit5/1) 2023; 16 Wang (D3SE01275A/cit49/1) 2018; 5 Zhang (D3SE01275A/cit34/1) 2022; 12 Ehelebe (D3SE01275A/cit89/1) 2021; 60 Ishiguro (D3SE01275A/cit90/1) 2012; 2 Choi (D3SE01275A/cit69/1) 2016; 6 Chen (D3SE01275A/cit132/1) 2017; 56 Li (D3SE01275A/cit80/1) 2022; 5 Fu (D3SE01275A/cit47/1) 2017; 42 Xu (D3SE01275A/cit124/1) 2022; 309 Cao (D3SE01275A/cit93/1) 2023; 8 Xie (D3SE01275A/cit136/1) 2022; 12 Zhang (D3SE01275A/cit139/1) 2017; 29 Jia (D3SE01275A/cit104/1) 2019; 2 Debe (D3SE01275A/cit6/1) 2012; 486 Xie (D3SE01275A/cit45/1) 2020; 3 Liu (D3SE01275A/cit31/1) 2022; 7 Zhou (D3SE01275A/cit37/1) 2022; 10 Wu (D3SE01275A/cit82/1) 2023; 62 Luo (D3SE01275A/cit8/1) 2023; 33 Wang (D3SE01275A/cit73/1) 2022; 8 Li (D3SE01275A/cit121/1) 2022; 437 Guo (D3SE01275A/cit105/1) 2016; 351 Chung (D3SE01275A/cit39/1) 2017; 357 Kongkanand (D3SE01275A/cit12/1) 2016; 7 Lai (D3SE01275A/cit101/1) 2012; 5 Wu (D3SE01275A/cit38/1) 2011; 332 Xie (D3SE01275A/cit116/1) 2022; 1 Zhang (D3SE01275A/cit72/1) 2020; 7 Deng (D3SE01275A/cit67/1) 2014; 7 Qu (D3SE01275A/cit112/1) 2018; 1 Stephens (D3SE01275A/cit2/1) 2016; 354 Xing (D3SE01275A/cit129/1) 2022; 165 Liu (D3SE01275A/cit9/1) 2018; 57 Wei (D3SE01275A/cit50/1) 2018; 88 Li (D3SE01275A/cit23/1) 2018; 30 Zhang (D3SE01275A/cit59/1) 2020; 71 Qiao (D3SE01275A/cit107/1) 2011; 3 Chen (D3SE01275A/cit61/1) 2020; 59 Wang (D3SE01275A/cit84/1) 2022; 26 Proietti (D3SE01275A/cit28/1) 2011; 2 Zhang (D3SE01275A/cit138/1) 2020; 13 Peng (D3SE01275A/cit120/1) 2022; 34 Yin (D3SE01275A/cit53/1) 2019; 374 Liu (D3SE01275A/cit117/1) 2021; 1 Hutchison (D3SE01275A/cit122/1) 2022; 144 Qu (D3SE01275A/cit103/1) 2010; 4 Zhang (D3SE01275A/cit33/1) 2022; 5 Handoko (D3SE01275A/cit87/1) 2018; 1 Yang (D3SE01275A/cit109/1) 2018; 115 Deng (D3SE01275A/cit22/1) 2021; 11 Yang (D3SE01275A/cit106/1) 2017; 7 Fan (D3SE01275A/cit54/1) 2021; 6 He (D3SE01275A/cit20/1) 2020; 49 Marshall-Roth (D3SE01275A/cit98/1) 2020; 11 Gasteiger (D3SE01275A/cit1/1) 2009; 324 Yin (D3SE01275A/cit32/1) 2022; 15 Wang (D3SE01275A/cit58/1) 2020; 604 Yang (D3SE01275A/cit140/1) 2020; 264 Chong (D3SE01275A/cit11/1) 2018; 362 Zitolo (D3SE01275A/cit62/1) 2015; 14 Zhang (D3SE01275A/cit60/1) 2022; 18 Kreider (D3SE01275A/cit79/1) 2022; 144 Mehmood (D3SE01275A/cit42/1) 2022; 5 Shui (D3SE01275A/cit48/1) 2015; 112 Wang (D3SE01275A/cit19/1) 2019; 9 Chen (D3SE01275A/cit63/1) 2021; 27 Li (D3SE01275A/cit110/1) 2020; 6 |
References_xml | – volume: 324 start-page: 71 year: 2009 ident: D3SE01275A/cit27/1 publication-title: Science doi: 10.1126/science.1170051 – volume: 12 start-page: 2103588 year: 2022 ident: D3SE01275A/cit96/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202103588 – volume: 144 start-page: 259 year: 2022 ident: D3SE01275A/cit78/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c09508 – volume: 58 start-page: 10677 year: 2019 ident: D3SE01275A/cit94/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201907002 – volume: 62 start-page: e202219188 year: 2023 ident: D3SE01275A/cit82/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202219188 – volume: 14 start-page: 14322 year: 2022 ident: D3SE01275A/cit16/1 publication-title: Nanoscale doi: 10.1039/D2NR03687H – volume: 604 start-page: 118040 year: 2020 ident: D3SE01275A/cit58/1 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2020.118040 – volume: 59 start-page: 1627 year: 2020 ident: D3SE01275A/cit61/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201912275 – volume: 280 start-page: 119437 year: 2021 ident: D3SE01275A/cit92/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.119437 – volume: 11 start-page: 9798 year: 2021 ident: D3SE01275A/cit125/1 publication-title: ACS Catal. doi: 10.1021/acscatal.1c01473 – volume: 11 start-page: 4173 year: 2020 ident: D3SE01275A/cit95/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18062-y – volume: 27 start-page: 145 year: 2021 ident: D3SE01275A/cit63/1 publication-title: Chem.–Eur. J. doi: 10.1002/chem.202002427 – volume: 49 start-page: 3484 year: 2020 ident: D3SE01275A/cit20/1 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00903E – volume: 18 start-page: 697 year: 2019 ident: D3SE01275A/cit81/1 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0356-x – volume: 118 start-page: 2313 year: 2018 ident: D3SE01275A/cit21/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00335 – volume: 115 start-page: 6626 year: 2018 ident: D3SE01275A/cit109/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1800771115 – volume: 20 start-page: 1385 year: 2021 ident: D3SE01275A/cit44/1 publication-title: Nat. Mater. doi: 10.1038/s41563-021-01030-2 – volume: 332 start-page: 443 year: 2011 ident: D3SE01275A/cit38/1 publication-title: Science doi: 10.1126/science.1200832 – volume: 59 start-page: 3235 year: 2020 ident: D3SE01275A/cit76/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201912451 – volume: 142 start-page: 2670 year: 1995 ident: D3SE01275A/cit3/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.2050072 – volume: 5 start-page: 363 year: 2022 ident: D3SE01275A/cit56/1 publication-title: Nat. Catal. doi: 10.1038/s41929-022-00776-5 – volume: 362 start-page: 1276 year: 2018 ident: D3SE01275A/cit11/1 publication-title: Science doi: 10.1126/science.aau0630 – volume: 165 start-page: 112558 year: 2022 ident: D3SE01275A/cit129/1 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2022.112558 – volume: 26 start-page: 101017 year: 2022 ident: D3SE01275A/cit84/1 publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2022.101017 – volume: 14 start-page: 937 year: 2015 ident: D3SE01275A/cit62/1 publication-title: Nat. Mater. doi: 10.1038/nmat4367 – volume: 27 start-page: 185 year: 2021 ident: D3SE01275A/cit119/1 publication-title: J. Electrochem. – volume: 15 start-page: 6886 year: 2021 ident: D3SE01275A/cit46/1 publication-title: ACS Nano doi: 10.1021/acsnano.0c10637 – volume: 7 start-page: 1919 year: 2014 ident: D3SE01275A/cit67/1 publication-title: Energy Environ. Sci. doi: 10.1039/C4EE00370E – volume: 13 start-page: 1734 year: 2022 ident: D3SE01275A/cit123/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-29357-7 – volume: 54 start-page: 9907 year: 2015 ident: D3SE01275A/cit29/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201503159 – volume: 13 start-page: 111 year: 2020 ident: D3SE01275A/cit138/1 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE03027A – volume: 13 start-page: 45661 year: 2021 ident: D3SE01275A/cit113/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c14709 – volume: 8 start-page: eadd8873 year: 2022 ident: D3SE01275A/cit73/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.add8873 – volume: 2 start-page: 416 year: 2011 ident: D3SE01275A/cit28/1 publication-title: Nat. Commun. doi: 10.1038/ncomms1427 – volume: 6 start-page: 3440 year: 2020 ident: D3SE01275A/cit110/1 publication-title: Chem doi: 10.1016/j.chempr.2020.10.027 – volume: 9 start-page: 10126 year: 2019 ident: D3SE01275A/cit19/1 publication-title: ACS Catal. doi: 10.1021/acscatal.9b02583 – volume: 351 start-page: 361 year: 2016 ident: D3SE01275A/cit105/1 publication-title: Science doi: 10.1126/science.aad0832 – volume: 309 start-page: 121290 year: 2022 ident: D3SE01275A/cit124/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2022.121290 – volume: 345 start-page: 121360 year: 2023 ident: D3SE01275A/cit128/1 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.121360 – volume: 30 start-page: 1800588 year: 2018 ident: D3SE01275A/cit23/1 publication-title: Adv. Mater. doi: 10.1002/adma.201800588 – volume: 12 start-page: 11097 year: 2022 ident: D3SE01275A/cit100/1 publication-title: ACS Catal. doi: 10.1021/acscatal.2c03216 – volume: 357 start-page: 479 year: 2017 ident: D3SE01275A/cit39/1 publication-title: Science doi: 10.1126/science.aan2255 – start-page: 31 year: 2021 ident: D3SE01275A/cit41/1 publication-title: Adv. Funct. Mater. – volume: 3 start-page: 3807 year: 2020 ident: D3SE01275A/cit68/1 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.0c00255 – volume: 33 start-page: 2101038 year: 2021 ident: D3SE01275A/cit135/1 publication-title: Adv. Mater. doi: 10.1002/adma.202101038 – volume: 1 start-page: 1798 year: 2021 ident: D3SE01275A/cit99/1 publication-title: JACS Au doi: 10.1021/jacsau.1c00309 – volume: 8 start-page: 360 year: 2023 ident: D3SE01275A/cit93/1 publication-title: Green Energy Environ. doi: 10.1016/j.gee.2021.11.005 – volume: 7 start-page: 3675 year: 2023 ident: D3SE01275A/cit14/1 publication-title: Sustainable Energy Fuels doi: 10.1039/D3SE00537B – volume: 33 start-page: 2215021 year: 2023 ident: D3SE01275A/cit8/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202215021 – volume: 29 start-page: 1970332 year: 2019 ident: D3SE01275A/cit51/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201970332 – volume: 35 start-page: 2211398 year: 2023 ident: D3SE01275A/cit64/1 publication-title: Adv. Mater. doi: 10.1002/adma.202211398 – volume: 7 start-page: 139 year: 2017 ident: D3SE01275A/cit106/1 publication-title: ACS Catal. doi: 10.1021/acscatal.6b02702 – volume: 54 start-page: 12753 year: 2015 ident: D3SE01275A/cit75/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201504903 – volume: 2 start-page: 688 year: 2019 ident: D3SE01275A/cit104/1 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0297-4 – volume: 29 start-page: 1604556 year: 2017 ident: D3SE01275A/cit139/1 publication-title: Adv. Mater. doi: 10.1002/adma.201604556 – volume: 3 start-page: 634 year: 2011 ident: D3SE01275A/cit107/1 publication-title: Nat. Chem. doi: 10.1038/nchem.1095 – volume: 57 start-page: 1204 year: 2018 ident: D3SE01275A/cit9/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201709597 – volume: 29 start-page: 2215002 year: 2023 ident: D3SE01275A/cit17/1 publication-title: J. Electrochem. – volume: 71 start-page: 104547 year: 2020 ident: D3SE01275A/cit59/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.104547 – volume: 141 start-page: 19800 year: 2019 ident: D3SE01275A/cit52/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b09234 – volume: 1 start-page: 1291 year: 2021 ident: D3SE01275A/cit117/1 publication-title: Chem Catal. doi: 10.1016/j.checat.2021.09.012 – volume: 42 start-page: 249 year: 2017 ident: D3SE01275A/cit47/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.10.051 – volume: 123 start-page: 6257 year: 2023 ident: D3SE01275A/cit83/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.2c00515 – volume: 142 start-page: 21861 year: 2020 ident: D3SE01275A/cit97/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c10636 – volume: 58 start-page: 18971 year: 2019 ident: D3SE01275A/cit40/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201909312 – volume: 144 start-page: 22549 year: 2022 ident: D3SE01275A/cit79/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c08600 – volume: 6 start-page: 475 year: 2021 ident: D3SE01275A/cit54/1 publication-title: Nat. Energy doi: 10.1038/s41560-021-00824-7 – volume: 2 start-page: 1700395 year: 2018 ident: D3SE01275A/cit77/1 publication-title: Small Methods doi: 10.1002/smtd.201700395 – volume: 56 start-page: 13800 year: 2017 ident: D3SE01275A/cit130/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201706602 – volume: 2 start-page: 452 year: 2020 ident: D3SE01275A/cit115/1 publication-title: Carbon Energy doi: 10.1002/cey2.47 – volume: 77 start-page: 1273 year: 2017 ident: D3SE01275A/cit35/1 publication-title: ECS Trans. – volume: 2 start-page: 1319 year: 2012 ident: D3SE01275A/cit90/1 publication-title: ACS Catal. doi: 10.1021/cs300228p – volume: 6 start-page: 3136 year: 2016 ident: D3SE01275A/cit69/1 publication-title: ACS Catal. doi: 10.1021/acscatal.6b00643 – volume: 1 start-page: 63 year: 2018 ident: D3SE01275A/cit65/1 publication-title: Nat. Catal. doi: 10.1038/s41929-017-0008-y – volume: 486 start-page: 43 year: 2012 ident: D3SE01275A/cit6/1 publication-title: Nature doi: 10.1038/nature11115 – volume: 5 start-page: 4973 year: 2014 ident: D3SE01275A/cit102/1 publication-title: Nat. Commun. doi: 10.1038/ncomms5973 – volume: 16 start-page: 1466 year: 2023 ident: D3SE01275A/cit5/1 publication-title: Energy Environ. Sci. doi: 10.1039/D2EE03169H – volume: 56 start-page: 6937 year: 2017 ident: D3SE01275A/cit132/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201702473 – volume: 201 start-page: 1212 year: 1964 ident: D3SE01275A/cit25/1 publication-title: Nature doi: 10.1038/2011212a0 – volume: 3 start-page: 856 year: 2021 ident: D3SE01275A/cit137/1 publication-title: Carbon Energy doi: 10.1002/cey2.135 – volume: 11 start-page: 74 year: 2021 ident: D3SE01275A/cit118/1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c03496 – volume: 166 start-page: F3311 year: 2019 ident: D3SE01275A/cit70/1 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0371907jes – volume: 13 start-page: 2900 year: 2022 ident: D3SE01275A/cit114/1 publication-title: Nat. Commun. doi: 10.1038/s41467-022-30520-3 – volume: 1 start-page: 935 year: 2018 ident: D3SE01275A/cit134/1 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0164-8 – volume: 28 start-page: 2108061 year: 2022 ident: D3SE01275A/cit10/1 publication-title: J. Electrochem. – volume: 12 start-page: 13853 year: 2022 ident: D3SE01275A/cit34/1 publication-title: ACS Catal. doi: 10.1021/acscatal.2c02146 – volume: 11 start-page: 1136 year: 2021 ident: D3SE01275A/cit86/1 publication-title: ACS Catal. doi: 10.1021/acscatal.0c04789 – volume: 1 start-page: 1623 year: 2009 ident: D3SE01275A/cit55/1 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am900219g – volume: 144 start-page: 16524 year: 2022 ident: D3SE01275A/cit122/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c05779 – volume: 256 start-page: 117849 year: 2019 ident: D3SE01275A/cit131/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.117849 – volume: 19 start-page: 19 year: 1989 ident: D3SE01275A/cit26/1 publication-title: J. Appl. Electrochem. doi: 10.1007/BF01039385 – volume: 7 start-page: 1127 year: 2016 ident: D3SE01275A/cit12/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b00216 – volume: 3 start-page: 1044 year: 2020 ident: D3SE01275A/cit45/1 publication-title: Nat. Catal. doi: 10.1038/s41929-020-00546-1 – volume: 112 start-page: 10629 year: 2015 ident: D3SE01275A/cit48/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1507159112 – volume: 1 start-page: 658 year: 2022 ident: D3SE01275A/cit111/1 publication-title: Nat. Synth. doi: 10.1038/s44160-022-00129-x – volume: 1 start-page: 552 year: 2009 ident: D3SE01275A/cit13/1 publication-title: Nat. Chem. doi: 10.1038/nchem.367 – volume: 7 start-page: 16690 year: 2019 ident: D3SE01275A/cit108/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA03518D – volume: 56 start-page: 13944 year: 2017 ident: D3SE01275A/cit18/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201703864 – volume: 1 start-page: 781 year: 2018 ident: D3SE01275A/cit112/1 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0146-x – volume: 437 start-page: 135320 year: 2022 ident: D3SE01275A/cit121/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.135320 – volume: 15 start-page: 3033 year: 2022 ident: D3SE01275A/cit32/1 publication-title: Energy Environ. Sci. doi: 10.1039/D2EE00061J – volume: 5 start-page: 311 year: 2022 ident: D3SE01275A/cit42/1 publication-title: Nat. Catal. doi: 10.1038/s41929-022-00772-9 – volume: 2 start-page: 259 year: 2019 ident: D3SE01275A/cit30/1 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0237-3 – volume: 54 start-page: 10102 year: 2015 ident: D3SE01275A/cit85/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201500569 – volume: 88 start-page: 19 year: 2018 ident: D3SE01275A/cit50/1 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2018.01.011 – volume: 3 start-page: 1396 year: 2018 ident: D3SE01275A/cit71/1 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.8b00516 – volume: 8 start-page: 2102209 year: 2021 ident: D3SE01275A/cit36/1 publication-title: Adv. Sci. doi: 10.1002/advs.202102209 – volume: 5 start-page: 7936 year: 2012 ident: D3SE01275A/cit101/1 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee21802j – volume: 7 start-page: 866 year: 2022 ident: D3SE01275A/cit127/1 publication-title: Nat. Energy doi: 10.1038/s41560-022-01098-3 – volume: 4 start-page: 1321 year: 2010 ident: D3SE01275A/cit103/1 publication-title: ACS Nano doi: 10.1021/nn901850u – volume: 12 start-page: 2102688 year: 2022 ident: D3SE01275A/cit136/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202102688 – volume: 285 start-page: 334 year: 2015 ident: D3SE01275A/cit24/1 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2015.03.047 – volume: 13 start-page: 887 year: 2021 ident: D3SE01275A/cit57/1 publication-title: Nat. Chem. doi: 10.1038/s41557-021-00734-x – volume: 18 start-page: 2105329 year: 2022 ident: D3SE01275A/cit60/1 publication-title: Small doi: 10.1002/smll.202105329 – volume: 595 start-page: 361 year: 2021 ident: D3SE01275A/cit7/1 publication-title: Nature doi: 10.1038/s41586-021-03482-7 – volume: 144 start-page: 2171 year: 2022 ident: D3SE01275A/cit66/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c10814 – volume: 5 start-page: 455 year: 2022 ident: D3SE01275A/cit33/1 publication-title: Nat. Catal. doi: 10.1038/s41929-022-00778-3 – volume: 5 start-page: 900 year: 2022 ident: D3SE01275A/cit80/1 publication-title: Nat. Catal. doi: 10.1038/s41929-022-00846-8 – volume: 115 start-page: 16087 year: 2011 ident: D3SE01275A/cit74/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp2042526 – volume: 11 start-page: 5283 year: 2020 ident: D3SE01275A/cit98/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-18969-6 – volume: 168 start-page: 014513 year: 2021 ident: D3SE01275A/cit91/1 publication-title: J. Electrochem. Soc. doi: 10.1149/1945-7111/abdc64 – volume: 374 start-page: 43 year: 2019 ident: D3SE01275A/cit53/1 publication-title: J. Catal. doi: 10.1016/j.jcat.2019.04.028 – volume: 7 start-page: 652 year: 2022 ident: D3SE01275A/cit31/1 publication-title: Nat. Energy doi: 10.1038/s41560-022-01062-1 – volume: 264 start-page: 118523 year: 2020 ident: D3SE01275A/cit140/1 publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2019.118523 – volume: 33 start-page: 886 year: 2017 ident: D3SE01275A/cit15/1 publication-title: Acta Phys. Chim. Sin. doi: 10.3866/PKU.WHXB201702092 – volume: 5 start-page: 1914 year: 2018 ident: D3SE01275A/cit49/1 publication-title: ChemElectroChem doi: 10.1002/celc.201700939 – volume: 34 start-page: 2202544 year: 2022 ident: D3SE01275A/cit120/1 publication-title: Adv. Mater. doi: 10.1002/adma.202202544 – volume: 11 start-page: 2101222 year: 2021 ident: D3SE01275A/cit22/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202101222 – volume: 10 start-page: 20323 year: 2022 ident: D3SE01275A/cit37/1 publication-title: J. Mater. Chem. A doi: 10.1039/D2TA03669J – volume: 9 start-page: 3736 year: 2016 ident: D3SE01275A/cit133/1 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE01867J – volume: 59 start-page: 19175 year: 2020 ident: D3SE01275A/cit126/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202006928 – volume: 4 start-page: eaar7180 year: 2018 ident: D3SE01275A/cit4/1 publication-title: Sci. Adv. doi: 10.1126/sciadv.aar7180 – volume: 43 start-page: 1918 year: 2022 ident: D3SE01275A/cit88/1 publication-title: Chin. J. Catal. doi: 10.1016/S1872-2067(21)63993-1 – volume: 7 start-page: 1775 year: 2020 ident: D3SE01275A/cit72/1 publication-title: ChemElectroChem doi: 10.1002/celc.202000351 – volume: 60 start-page: 8882 year: 2021 ident: D3SE01275A/cit89/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.202014711 – volume: 324 start-page: 48 year: 2009 ident: D3SE01275A/cit1/1 publication-title: Science doi: 10.1126/science.1172083 – volume: 354 start-page: 1378 year: 2016 ident: D3SE01275A/cit2/1 publication-title: Science doi: 10.1126/science.aal3303 – volume: 31 start-page: 2102420 year: 2021 ident: D3SE01275A/cit43/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202102420 – volume: 1 start-page: 922 year: 2018 ident: D3SE01275A/cit87/1 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0182-6 – volume: 1 start-page: 100006 year: 2022 ident: D3SE01275A/cit116/1 publication-title: Adv. Sensor Energy Mater. doi: 10.1016/j.asems.2022.100006 |
SSID | ssj0002124257 |
Score | 2.2655542 |
SecondaryResourceType | review_article |
Snippet | After decades of effort, the performance of low-cost transition metal-nitrogen-carbon (M-N-C) catalysts has been significantly improved, positioning them as... After decades of effort, the performance of low-cost transition metal–nitrogen–carbon (M–N–C) catalysts has been significantly improved, positioning them as... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 178 |
SubjectTerms | Aqueous electrolytes Carbon Catalysts Chemical reduction Controllability Electrocatalysts Electrolytes Electrolytic cells Fuel cells Fuel technology Low cost Nitrogen Oxygen reduction reactions Proton exchange membrane fuel cells Transition metals Working conditions |
Title | Low-cost transition metal-nitrogen-carbon electrocatalysts for the oxygen reduction reaction: operating conditions from aqueous electrolytes to fuel cells |
URI | https://www.proquest.com/docview/2915107969 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELe67gUeEP8mOgayBC9oMiyOHce8VaXTQIWXdWLwUsWOo06qmqlJBOVD8AH4tJzt_BsUCXixKseOlN7Pd2f77ncIPQcbJDkzEWGJkIQJHZGYQcNplCmlDRWpTU5-_yE6u2DvLvnlYPC9F7VUleql_rYzr-R_pAp9IFebJfsPkm1fCh3wG-QLLUgY2r-S8Sz_QnRelLbQw9oHX9mS0MmKwELd5DCP6GSjoLeuduMOa7ZFWbTRhfnXLQw73lgGVzcfnEjdBHzk15Zy2afl2qttFzTnElISMCc2eLZ-72pbeqqIrDKrY3sZUPS93vNelpbxyYYWcXZw69JPKp-nfUXmjTV15_xeF32qyGRpuv7Py7xy9yrLKwIKq-meeUaEj_Dhp83o-kiD2jAYEtSE2E71WVJCwuTJDT0d9-BIezo38DWAavMd-OJfv1mGk9ASq6ZhYexlO-_ZvzYqsXu4h_YpbDvoEO2Pp_O3s_bUDgy9VXINz20oX3WTbno23XZlb9PUknE-y_wuulNvNvDYI-ceGpj1fXS7R0H5AP1oMIQ7DOGdGMK_YggDhjBgCHsM4RZDuMHQa9wiCHcIwhZBuEYQ7iMIlzm2oMAOQQ_Rxel0Pjkjdb0OomkclCQRsdIs1ok9VTRSUBMEKQ8zxmHFs0AJHhgwaiwKojQT3ChlEi6MpElGpYGNwQEarvO1eYSw1EyZUPFMKMm4ZlLFMuFKpCJNZZTqEXrR_NcLXZPZ25oqq4ULqgjl4k14PnVyGY_Qs3bstadw2TnqqBHZol7ixYJKcIhPhIzkCB2AGNv5ndQP__TgMbrVYfsIDctNZZ6AA1uqpzWqfgI3Xajn |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-cost+transition+metal-nitrogen-carbon+electrocatalysts+for+the+oxygen+reduction+reaction%3A+operating+conditions+from+aqueous+electrolytes+to+fuel+cells&rft.jtitle=Sustainable+energy+%26+fuels&rft.au=Cui%2C+Li-Ting&rft.au=Wang%2C+Yu-Cheng&rft.au=Zhou%2C+Zhi-You&rft.au=Lin%2C+Wen-Feng&rft.date=2024-01-16&rft.eissn=2398-4902&rft.volume=8&rft.issue=2&rft.spage=178&rft.epage=191&rft_id=info:doi/10.1039%2Fd3se01275a&rft.externalDocID=d3se01275a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2398-4902&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2398-4902&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2398-4902&client=summon |