Low-cost transition metal-nitrogen-carbon electrocatalysts for the oxygen reduction reaction: operating conditions from aqueous electrolytes to fuel cells

After decades of effort, the performance of low-cost transition metal-nitrogen-carbon (M-N-C) catalysts has been significantly improved, positioning them as promising catalysts for the oxygen reduction reaction in proton-exchange-membrane fuel cells (PEMFCs). Despite this progress, compared to tradi...

Full description

Saved in:
Bibliographic Details
Published inSustainable energy & fuels Vol. 8; no. 2; pp. 178 - 191
Main Authors Cui, Li-Ting, Wang, Yu-Cheng, Zhou, Zhi-You, Lin, Wen-Feng, Sun, Shi-Gang
Format Journal Article
LanguageEnglish
Published London Royal Society of Chemistry 16.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract After decades of effort, the performance of low-cost transition metal-nitrogen-carbon (M-N-C) catalysts has been significantly improved, positioning them as promising catalysts for the oxygen reduction reaction in proton-exchange-membrane fuel cells (PEMFCs). Despite this progress, compared to traditional commercial Pt/C catalysts, the practical application of M-N-C catalysts in PEMFCs is hindered by their inferior performance in acidic environments. In this perspective, we first summarize the current status of M-N-C catalysts in terms of activity and stability, and compare their performance with that of Pt/C catalysts. Then we discuss the fundamental research challenges associated with M-N-C catalysts, which are primarily related to (i) conducting basic research with tests exclusively using oversimplified aqueous electrolytes that limits exploration in practical fuel cell environments; (ii) lacking operando characterization methods under fuel cell working conditions; and (iii) the complexity of catalyst structures and fuel cell operating environments causing difficulty in M-N-C catalyst research. Lastly, we propose key advances that need to be made in the future to address these fundamental challenges, including the rational design of fit-for-purpose catalysts based on more cost-effective and efficient modelling, preparing model/quasi-model catalysts with defined and controllable structures, and developing operando characterization techniques for PEMFCs. By combined study using model/quasi-model catalysts, operando characterization methods and atomistic modeling, we can deeply understand the "structure-performance" relationship of the catalysts at various scales and develop next generation M-N-C catalysts that can meet the increased demand for PEMFCs. The rational design of M-N-C oxygen reduction catalysts for fuel cells.
AbstractList After decades of effort, the performance of low-cost transition metal-nitrogen-carbon (M-N-C) catalysts has been significantly improved, positioning them as promising catalysts for the oxygen reduction reaction in proton-exchange-membrane fuel cells (PEMFCs). Despite this progress, compared to traditional commercial Pt/C catalysts, the practical application of M-N-C catalysts in PEMFCs is hindered by their inferior performance in acidic environments. In this perspective, we first summarize the current status of M-N-C catalysts in terms of activity and stability, and compare their performance with that of Pt/C catalysts. Then we discuss the fundamental research challenges associated with M-N-C catalysts, which are primarily related to (i) conducting basic research with tests exclusively using oversimplified aqueous electrolytes that limits exploration in practical fuel cell environments; (ii) lacking operando characterization methods under fuel cell working conditions; and (iii) the complexity of catalyst structures and fuel cell operating environments causing difficulty in M-N-C catalyst research. Lastly, we propose key advances that need to be made in the future to address these fundamental challenges, including the rational design of fit-for-purpose catalysts based on more cost-effective and efficient modelling, preparing model/quasi-model catalysts with defined and controllable structures, and developing operando characterization techniques for PEMFCs. By combined study using model/quasi-model catalysts, operando characterization methods and atomistic modeling, we can deeply understand the "structure-performance" relationship of the catalysts at various scales and develop next generation M-N-C catalysts that can meet the increased demand for PEMFCs. The rational design of M-N-C oxygen reduction catalysts for fuel cells.
After decades of effort, the performance of low-cost transition metal–nitrogen–carbon (M–N–C) catalysts has been significantly improved, positioning them as promising catalysts for the oxygen reduction reaction in proton-exchange-membrane fuel cells (PEMFCs). Despite this progress, compared to traditional commercial Pt/C catalysts, the practical application of M–N–C catalysts in PEMFCs is hindered by their inferior performance in acidic environments. In this perspective, we first summarize the current status of M–N–C catalysts in terms of activity and stability, and compare their performance with that of Pt/C catalysts. Then we discuss the fundamental research challenges associated with M–N–C catalysts, which are primarily related to (i) conducting basic research with tests exclusively using oversimplified aqueous electrolytes that limits exploration in practical fuel cell environments; (ii) lacking operando characterization methods under fuel cell working conditions; and (iii) the complexity of catalyst structures and fuel cell operating environments causing difficulty in M–N–C catalyst research. Lastly, we propose key advances that need to be made in the future to address these fundamental challenges, including the rational design of fit-for-purpose catalysts based on more cost-effective and efficient modelling, preparing model/quasi-model catalysts with defined and controllable structures, and developing operando characterization techniques for PEMFCs. By combined study using model/quasi-model catalysts, operando characterization methods and atomistic modeling, we can deeply understand the “structure-performance” relationship of the catalysts at various scales and develop next generation M–N–C catalysts that can meet the increased demand for PEMFCs.
Author Zhou, Zhi-You
Lin, Wen-Feng
Sun, Shi-Gang
Cui, Li-Ting
Wang, Yu-Cheng
AuthorAffiliation State Key Laboratory of Physical Chemistry of Solid Surfaces
Department of Chemical Engineering
Xiamen University
College of Chemistry and Chemical Engineering
Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)
Loughborough University
AuthorAffiliation_xml – sequence: 0
  name: State Key Laboratory of Physical Chemistry of Solid Surfaces
– sequence: 0
  name: Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM)
– sequence: 0
  name: College of Chemistry and Chemical Engineering
– sequence: 0
  name: Loughborough University
– sequence: 0
  name: Xiamen University
– sequence: 0
  name: Department of Chemical Engineering
Author_xml – sequence: 1
  givenname: Li-Ting
  surname: Cui
  fullname: Cui, Li-Ting
– sequence: 2
  givenname: Yu-Cheng
  surname: Wang
  fullname: Wang, Yu-Cheng
– sequence: 3
  givenname: Zhi-You
  surname: Zhou
  fullname: Zhou, Zhi-You
– sequence: 4
  givenname: Wen-Feng
  surname: Lin
  fullname: Lin, Wen-Feng
– sequence: 5
  givenname: Shi-Gang
  surname: Sun
  fullname: Sun, Shi-Gang
BookMark eNptkV1LwzAUhoNMcM7deC8EvBOqSdoujXdjzg8YeKFelzQ9nR1dMpMU7V_x15p1fiFe5XDO877JyXuIBtpoQOiYknNKYnFRxg4IZTyVe2jIYpFFiSBs8Ks-QGPnVoQQRlnCUj5E7wvzGinjPPZWalf72mi8Bi-bSNfemiXoSElbhC40oEJHyTDsnHe4Mhb7Z8DmrQsYtlC2qtdbkH1xic0GrPS1XmJldNm7B501ayxfWjCt-3JtOg8Oe4OrFhqsoGncEdqvZONg_HmO0NP1_HF2Gy3ub-5m00WkWEZ9JHlWqCRTkjGWgeAMKC3TuEpSxsuEFjylQLIsmdBJWfEUigJkykEwWTEBdBKP0OnOd2NNeJTz-cq0VocrcyZoSgkXExEosqOUNc5ZqHJVe7ldKHxc3eSU5NsQ8qv4Yd6HMA2Ssz-Sja3X0nb_wyc72Dr1zf0kGn8Ax1OXng
CitedBy_id crossref_primary_10_1002_macp_202400092
Cites_doi 10.1126/science.1170051
10.1002/aenm.202103588
10.1021/jacs.1c09508
10.1002/anie.201907002
10.1002/anie.202219188
10.1039/D2NR03687H
10.1016/j.memsci.2020.118040
10.1002/anie.201912275
10.1016/j.apcatb.2020.119437
10.1021/acscatal.1c01473
10.1038/s41467-020-18062-y
10.1002/chem.202002427
10.1039/C9CS00903E
10.1038/s41563-019-0356-x
10.1021/acs.chemrev.7b00335
10.1073/pnas.1800771115
10.1038/s41563-021-01030-2
10.1126/science.1200832
10.1002/anie.201912451
10.1149/1.2050072
10.1038/s41929-022-00776-5
10.1126/science.aau0630
10.1016/j.rser.2022.112558
10.1016/j.mtener.2022.101017
10.1038/nmat4367
10.1021/acsnano.0c10637
10.1039/C4EE00370E
10.1038/s41467-022-29357-7
10.1002/anie.201503159
10.1039/C9EE03027A
10.1021/acsami.1c14709
10.1126/sciadv.add8873
10.1038/ncomms1427
10.1016/j.chempr.2020.10.027
10.1021/acscatal.9b02583
10.1126/science.aad0832
10.1016/j.apcatb.2022.121290
10.1016/j.apenergy.2023.121360
10.1002/adma.201800588
10.1021/acscatal.2c03216
10.1126/science.aan2255
10.1021/acsaem.0c00255
10.1002/adma.202101038
10.1021/jacsau.1c00309
10.1016/j.gee.2021.11.005
10.1039/D3SE00537B
10.1002/adfm.202215021
10.1002/adfm.201970332
10.1002/adma.202211398
10.1021/acscatal.6b02702
10.1002/anie.201504903
10.1038/s41929-019-0297-4
10.1002/adma.201604556
10.1038/nchem.1095
10.1002/anie.201709597
10.1016/j.nanoen.2020.104547
10.1021/jacs.9b09234
10.1016/j.checat.2021.09.012
10.1016/j.nanoen.2017.10.051
10.1021/acs.chemrev.2c00515
10.1021/jacs.0c10636
10.1002/anie.201909312
10.1021/jacs.2c08600
10.1038/s41560-021-00824-7
10.1002/smtd.201700395
10.1002/anie.201706602
10.1002/cey2.47
10.1021/cs300228p
10.1021/acscatal.6b00643
10.1038/s41929-017-0008-y
10.1038/nature11115
10.1038/ncomms5973
10.1039/D2EE03169H
10.1002/anie.201702473
10.1038/2011212a0
10.1002/cey2.135
10.1021/acscatal.0c03496
10.1149/2.0371907jes
10.1038/s41467-022-30520-3
10.1038/s41929-018-0164-8
10.1021/acscatal.2c02146
10.1021/acscatal.0c04789
10.1021/am900219g
10.1021/jacs.2c05779
10.1016/j.apcatb.2019.117849
10.1007/BF01039385
10.1021/acs.jpclett.6b00216
10.1038/s41929-020-00546-1
10.1073/pnas.1507159112
10.1038/s44160-022-00129-x
10.1038/nchem.367
10.1039/C9TA03518D
10.1002/anie.201703864
10.1038/s41929-018-0146-x
10.1016/j.cej.2022.135320
10.1039/D2EE00061J
10.1038/s41929-022-00772-9
10.1038/s41929-019-0237-3
10.1002/anie.201500569
10.1016/j.elecom.2018.01.011
10.1021/acsenergylett.8b00516
10.1002/advs.202102209
10.1039/c2ee21802j
10.1038/s41560-022-01098-3
10.1021/nn901850u
10.1002/aenm.202102688
10.1016/j.jpowsour.2015.03.047
10.1038/s41557-021-00734-x
10.1002/smll.202105329
10.1038/s41586-021-03482-7
10.1021/jacs.1c10814
10.1038/s41929-022-00778-3
10.1038/s41929-022-00846-8
10.1021/jp2042526
10.1038/s41467-020-18969-6
10.1149/1945-7111/abdc64
10.1016/j.jcat.2019.04.028
10.1038/s41560-022-01062-1
10.1016/j.apcatb.2019.118523
10.3866/PKU.WHXB201702092
10.1002/celc.201700939
10.1002/adma.202202544
10.1002/aenm.202101222
10.1039/D2TA03669J
10.1039/C6EE01867J
10.1002/anie.202006928
10.1126/sciadv.aar7180
10.1016/S1872-2067(21)63993-1
10.1002/celc.202000351
10.1002/anie.202014711
10.1126/science.1172083
10.1126/science.aal3303
10.1002/adfm.202102420
10.1038/s41929-018-0182-6
10.1016/j.asems.2022.100006
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2024
Copyright_xml – notice: Copyright Royal Society of Chemistry 2024
DBID AAYXX
CITATION
7QO
7SP
7ST
7U6
8FD
C1K
FR3
L7M
P64
DOI 10.1039/d3se01275a
DatabaseName CrossRef
Biotechnology Research Abstracts
Electronics & Communications Abstracts
Environment Abstracts
Sustainability Science Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Biotechnology Research Abstracts
Technology Research Database
Sustainability Science Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Biotechnology Research Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2398-4902
EndPage 191
ExternalDocumentID 10_1039_D3SE01275A
d3se01275a
GroupedDBID 0R~
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAXHV
ABASK
ABDVN
ABPDG
ABRYZ
AENGV
AETIL
AFOGI
AGEGJ
AGRSR
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
BLAPV
C6K
EBS
ECGLT
GGIMP
H13
O9-
OK1
RAOCF
RCNCU
RRC
RSCEA
RVUXY
AAYXX
ABJNI
AFRZK
AKMSF
CITATION
7QO
7SP
7ST
7U6
8FD
C1K
FR3
L7M
P64
ID FETCH-LOGICAL-c281t-a78bc48ca2228e972e11d53f4527d41b751e0884616df75ebbea57e92af29e163
ISSN 2398-4902
IngestDate Mon Jun 30 11:56:08 EDT 2025
Tue Jul 01 01:58:21 EDT 2025
Thu Apr 24 23:02:15 EDT 2025
Tue Dec 17 20:58:29 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-a78bc48ca2228e972e11d53f4527d41b751e0884616df75ebbea57e92af29e163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2327-4090
0000-0002-3356-3403
0000-0001-5181-0642
0000-0002-4256-2058
PQID 2915107969
PQPubID 2048882
PageCount 14
ParticipantIDs crossref_citationtrail_10_1039_D3SE01275A
proquest_journals_2915107969
rsc_primary_d3se01275a
crossref_primary_10_1039_D3SE01275A
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-16
PublicationDateYYYYMMDD 2024-01-16
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-16
  day: 16
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Sustainable energy & fuels
PublicationYear 2024
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Gewirth (D3SE01275A/cit21/1) 2018; 118
Liu (D3SE01275A/cit97/1) 2020; 142
Wang (D3SE01275A/cit29/1) 2015; 54
Li (D3SE01275A/cit77/1) 2018; 2
Wang (D3SE01275A/cit71/1) 2018; 3
Zhu (D3SE01275A/cit18/1) 2017; 56
Li (D3SE01275A/cit81/1) 2019; 18
Ma (D3SE01275A/cit36/1) 2021; 8
Zhong (D3SE01275A/cit94/1) 2019; 58
Wan (D3SE01275A/cit100/1) 2022; 12
Zhou (D3SE01275A/cit118/1) 2021; 11
Qiu (D3SE01275A/cit88/1) 2022; 43
Chen (D3SE01275A/cit123/1) 2022; 13
Wang (D3SE01275A/cit15/1) 2017; 33
Herranz (D3SE01275A/cit74/1) 2011; 115
Shen (D3SE01275A/cit130/1) 2017; 56
Nabae (D3SE01275A/cit91/1) 2021; 168
Wu (D3SE01275A/cit111/1) 2022; 1
Ding (D3SE01275A/cit126/1) 2020; 59
Ding (D3SE01275A/cit125/1) 2021; 11
Chen (D3SE01275A/cit131/1) 2019; 256
Wan (D3SE01275A/cit30/1) 2019; 2
Kim (D3SE01275A/cit3/1) 1995; 142
Wu (D3SE01275A/cit78/1) 2022; 144
Xia (D3SE01275A/cit51/1) 2019; 29
Jasinski (D3SE01275A/cit25/1) 1964; 201
Yin (D3SE01275A/cit35/1) 2017; 77
Santori (D3SE01275A/cit70/1) 2019; 166
Yuan Li (D3SE01275A/cit17/1) 2023; 29
Sun (D3SE01275A/cit14/1) 2023; 7
Fei (D3SE01275A/cit65/1) 2018; 1
Chen (D3SE01275A/cit95/1) 2020; 11
Yan (D3SE01275A/cit115/1) 2020; 2
Long Huang (D3SE01275A/cit10/1) 2022; 28
Yu (D3SE01275A/cit92/1) 2021; 280
Yang (D3SE01275A/cit86/1) 2021; 11
Lazaridis (D3SE01275A/cit56/1) 2022; 5
Jiao (D3SE01275A/cit7/1) 2021; 595
Liang (D3SE01275A/cit102/1) 2014; 5
Zhao (D3SE01275A/cit83/1) 2023; 123
Banham (D3SE01275A/cit4/1) 2018; 4
Xia (D3SE01275A/cit57/1) 2021; 13
Xie (D3SE01275A/cit135/1) 2021; 33
Guo (D3SE01275A/cit46/1) 2021; 15
Kumar (D3SE01275A/cit76/1) 2020; 59
Li (D3SE01275A/cit134/1) 2018; 1
Yang (D3SE01275A/cit66/1) 2022; 144
Li (D3SE01275A/cit41/1) 2021
Zhai (D3SE01275A/cit127/1) 2022; 7
Xue-Ping Qin (D3SE01275A/cit119/1) 2021; 27
Xiao (D3SE01275A/cit52/1) 2019; 141
Zhao (D3SE01275A/cit128/1) 2023; 345
Cui (D3SE01275A/cit108/1) 2019; 7
Ohyama (D3SE01275A/cit99/1) 2021; 1
Banham (D3SE01275A/cit24/1) 2015; 285
Wan (D3SE01275A/cit113/1) 2021; 13
Han (D3SE01275A/cit114/1) 2022; 13
Lefevre (D3SE01275A/cit27/1) 2009; 324
Choi (D3SE01275A/cit75/1) 2015; 54
Jiao (D3SE01275A/cit16/1) 2022; 14
Masa (D3SE01275A/cit85/1) 2015; 54
Jaouen (D3SE01275A/cit55/1) 2009; 1
Cui (D3SE01275A/cit68/1) 2020; 3
Wu (D3SE01275A/cit133/1) 2016; 9
Greeley (D3SE01275A/cit13/1) 2009; 1
Zhou (D3SE01275A/cit43/1) 2021; 31
Zhao (D3SE01275A/cit96/1) 2022; 12
Gupta (D3SE01275A/cit26/1) 1989; 19
Liu (D3SE01275A/cit64/1) 2023; 35
Jiao (D3SE01275A/cit44/1) 2021; 20
Li (D3SE01275A/cit40/1) 2019; 58
Yan (D3SE01275A/cit137/1) 2021; 3
Fan (D3SE01275A/cit5/1) 2023; 16
Wang (D3SE01275A/cit49/1) 2018; 5
Zhang (D3SE01275A/cit34/1) 2022; 12
Ehelebe (D3SE01275A/cit89/1) 2021; 60
Ishiguro (D3SE01275A/cit90/1) 2012; 2
Choi (D3SE01275A/cit69/1) 2016; 6
Chen (D3SE01275A/cit132/1) 2017; 56
Li (D3SE01275A/cit80/1) 2022; 5
Fu (D3SE01275A/cit47/1) 2017; 42
Xu (D3SE01275A/cit124/1) 2022; 309
Cao (D3SE01275A/cit93/1) 2023; 8
Xie (D3SE01275A/cit136/1) 2022; 12
Zhang (D3SE01275A/cit139/1) 2017; 29
Jia (D3SE01275A/cit104/1) 2019; 2
Debe (D3SE01275A/cit6/1) 2012; 486
Xie (D3SE01275A/cit45/1) 2020; 3
Liu (D3SE01275A/cit31/1) 2022; 7
Zhou (D3SE01275A/cit37/1) 2022; 10
Wu (D3SE01275A/cit82/1) 2023; 62
Luo (D3SE01275A/cit8/1) 2023; 33
Wang (D3SE01275A/cit73/1) 2022; 8
Li (D3SE01275A/cit121/1) 2022; 437
Guo (D3SE01275A/cit105/1) 2016; 351
Chung (D3SE01275A/cit39/1) 2017; 357
Kongkanand (D3SE01275A/cit12/1) 2016; 7
Lai (D3SE01275A/cit101/1) 2012; 5
Wu (D3SE01275A/cit38/1) 2011; 332
Xie (D3SE01275A/cit116/1) 2022; 1
Zhang (D3SE01275A/cit72/1) 2020; 7
Deng (D3SE01275A/cit67/1) 2014; 7
Qu (D3SE01275A/cit112/1) 2018; 1
Stephens (D3SE01275A/cit2/1) 2016; 354
Xing (D3SE01275A/cit129/1) 2022; 165
Liu (D3SE01275A/cit9/1) 2018; 57
Wei (D3SE01275A/cit50/1) 2018; 88
Li (D3SE01275A/cit23/1) 2018; 30
Zhang (D3SE01275A/cit59/1) 2020; 71
Qiao (D3SE01275A/cit107/1) 2011; 3
Chen (D3SE01275A/cit61/1) 2020; 59
Wang (D3SE01275A/cit84/1) 2022; 26
Proietti (D3SE01275A/cit28/1) 2011; 2
Zhang (D3SE01275A/cit138/1) 2020; 13
Peng (D3SE01275A/cit120/1) 2022; 34
Yin (D3SE01275A/cit53/1) 2019; 374
Liu (D3SE01275A/cit117/1) 2021; 1
Hutchison (D3SE01275A/cit122/1) 2022; 144
Qu (D3SE01275A/cit103/1) 2010; 4
Zhang (D3SE01275A/cit33/1) 2022; 5
Handoko (D3SE01275A/cit87/1) 2018; 1
Yang (D3SE01275A/cit109/1) 2018; 115
Deng (D3SE01275A/cit22/1) 2021; 11
Yang (D3SE01275A/cit106/1) 2017; 7
Fan (D3SE01275A/cit54/1) 2021; 6
He (D3SE01275A/cit20/1) 2020; 49
Marshall-Roth (D3SE01275A/cit98/1) 2020; 11
Gasteiger (D3SE01275A/cit1/1) 2009; 324
Yin (D3SE01275A/cit32/1) 2022; 15
Wang (D3SE01275A/cit58/1) 2020; 604
Yang (D3SE01275A/cit140/1) 2020; 264
Chong (D3SE01275A/cit11/1) 2018; 362
Zitolo (D3SE01275A/cit62/1) 2015; 14
Zhang (D3SE01275A/cit60/1) 2022; 18
Kreider (D3SE01275A/cit79/1) 2022; 144
Mehmood (D3SE01275A/cit42/1) 2022; 5
Shui (D3SE01275A/cit48/1) 2015; 112
Wang (D3SE01275A/cit19/1) 2019; 9
Chen (D3SE01275A/cit63/1) 2021; 27
Li (D3SE01275A/cit110/1) 2020; 6
References_xml – volume: 324
  start-page: 71
  year: 2009
  ident: D3SE01275A/cit27/1
  publication-title: Science
  doi: 10.1126/science.1170051
– volume: 12
  start-page: 2103588
  year: 2022
  ident: D3SE01275A/cit96/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202103588
– volume: 144
  start-page: 259
  year: 2022
  ident: D3SE01275A/cit78/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c09508
– volume: 58
  start-page: 10677
  year: 2019
  ident: D3SE01275A/cit94/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201907002
– volume: 62
  start-page: e202219188
  year: 2023
  ident: D3SE01275A/cit82/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202219188
– volume: 14
  start-page: 14322
  year: 2022
  ident: D3SE01275A/cit16/1
  publication-title: Nanoscale
  doi: 10.1039/D2NR03687H
– volume: 604
  start-page: 118040
  year: 2020
  ident: D3SE01275A/cit58/1
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.118040
– volume: 59
  start-page: 1627
  year: 2020
  ident: D3SE01275A/cit61/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201912275
– volume: 280
  start-page: 119437
  year: 2021
  ident: D3SE01275A/cit92/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2020.119437
– volume: 11
  start-page: 9798
  year: 2021
  ident: D3SE01275A/cit125/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c01473
– volume: 11
  start-page: 4173
  year: 2020
  ident: D3SE01275A/cit95/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18062-y
– volume: 27
  start-page: 145
  year: 2021
  ident: D3SE01275A/cit63/1
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.202002427
– volume: 49
  start-page: 3484
  year: 2020
  ident: D3SE01275A/cit20/1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C9CS00903E
– volume: 18
  start-page: 697
  year: 2019
  ident: D3SE01275A/cit81/1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0356-x
– volume: 118
  start-page: 2313
  year: 2018
  ident: D3SE01275A/cit21/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00335
– volume: 115
  start-page: 6626
  year: 2018
  ident: D3SE01275A/cit109/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1800771115
– volume: 20
  start-page: 1385
  year: 2021
  ident: D3SE01275A/cit44/1
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-021-01030-2
– volume: 332
  start-page: 443
  year: 2011
  ident: D3SE01275A/cit38/1
  publication-title: Science
  doi: 10.1126/science.1200832
– volume: 59
  start-page: 3235
  year: 2020
  ident: D3SE01275A/cit76/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201912451
– volume: 142
  start-page: 2670
  year: 1995
  ident: D3SE01275A/cit3/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2050072
– volume: 5
  start-page: 363
  year: 2022
  ident: D3SE01275A/cit56/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-022-00776-5
– volume: 362
  start-page: 1276
  year: 2018
  ident: D3SE01275A/cit11/1
  publication-title: Science
  doi: 10.1126/science.aau0630
– volume: 165
  start-page: 112558
  year: 2022
  ident: D3SE01275A/cit129/1
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2022.112558
– volume: 26
  start-page: 101017
  year: 2022
  ident: D3SE01275A/cit84/1
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2022.101017
– volume: 14
  start-page: 937
  year: 2015
  ident: D3SE01275A/cit62/1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4367
– volume: 27
  start-page: 185
  year: 2021
  ident: D3SE01275A/cit119/1
  publication-title: J. Electrochem.
– volume: 15
  start-page: 6886
  year: 2021
  ident: D3SE01275A/cit46/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c10637
– volume: 7
  start-page: 1919
  year: 2014
  ident: D3SE01275A/cit67/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE00370E
– volume: 13
  start-page: 1734
  year: 2022
  ident: D3SE01275A/cit123/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29357-7
– volume: 54
  start-page: 9907
  year: 2015
  ident: D3SE01275A/cit29/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201503159
– volume: 13
  start-page: 111
  year: 2020
  ident: D3SE01275A/cit138/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE03027A
– volume: 13
  start-page: 45661
  year: 2021
  ident: D3SE01275A/cit113/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c14709
– volume: 8
  start-page: eadd8873
  year: 2022
  ident: D3SE01275A/cit73/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.add8873
– volume: 2
  start-page: 416
  year: 2011
  ident: D3SE01275A/cit28/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1427
– volume: 6
  start-page: 3440
  year: 2020
  ident: D3SE01275A/cit110/1
  publication-title: Chem
  doi: 10.1016/j.chempr.2020.10.027
– volume: 9
  start-page: 10126
  year: 2019
  ident: D3SE01275A/cit19/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b02583
– volume: 351
  start-page: 361
  year: 2016
  ident: D3SE01275A/cit105/1
  publication-title: Science
  doi: 10.1126/science.aad0832
– volume: 309
  start-page: 121290
  year: 2022
  ident: D3SE01275A/cit124/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2022.121290
– volume: 345
  start-page: 121360
  year: 2023
  ident: D3SE01275A/cit128/1
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2023.121360
– volume: 30
  start-page: 1800588
  year: 2018
  ident: D3SE01275A/cit23/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800588
– volume: 12
  start-page: 11097
  year: 2022
  ident: D3SE01275A/cit100/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c03216
– volume: 357
  start-page: 479
  year: 2017
  ident: D3SE01275A/cit39/1
  publication-title: Science
  doi: 10.1126/science.aan2255
– start-page: 31
  year: 2021
  ident: D3SE01275A/cit41/1
  publication-title: Adv. Funct. Mater.
– volume: 3
  start-page: 3807
  year: 2020
  ident: D3SE01275A/cit68/1
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.0c00255
– volume: 33
  start-page: 2101038
  year: 2021
  ident: D3SE01275A/cit135/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202101038
– volume: 1
  start-page: 1798
  year: 2021
  ident: D3SE01275A/cit99/1
  publication-title: JACS Au
  doi: 10.1021/jacsau.1c00309
– volume: 8
  start-page: 360
  year: 2023
  ident: D3SE01275A/cit93/1
  publication-title: Green Energy Environ.
  doi: 10.1016/j.gee.2021.11.005
– volume: 7
  start-page: 3675
  year: 2023
  ident: D3SE01275A/cit14/1
  publication-title: Sustainable Energy Fuels
  doi: 10.1039/D3SE00537B
– volume: 33
  start-page: 2215021
  year: 2023
  ident: D3SE01275A/cit8/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202215021
– volume: 29
  start-page: 1970332
  year: 2019
  ident: D3SE01275A/cit51/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201970332
– volume: 35
  start-page: 2211398
  year: 2023
  ident: D3SE01275A/cit64/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202211398
– volume: 7
  start-page: 139
  year: 2017
  ident: D3SE01275A/cit106/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02702
– volume: 54
  start-page: 12753
  year: 2015
  ident: D3SE01275A/cit75/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201504903
– volume: 2
  start-page: 688
  year: 2019
  ident: D3SE01275A/cit104/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0297-4
– volume: 29
  start-page: 1604556
  year: 2017
  ident: D3SE01275A/cit139/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604556
– volume: 3
  start-page: 634
  year: 2011
  ident: D3SE01275A/cit107/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1095
– volume: 57
  start-page: 1204
  year: 2018
  ident: D3SE01275A/cit9/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201709597
– volume: 29
  start-page: 2215002
  year: 2023
  ident: D3SE01275A/cit17/1
  publication-title: J. Electrochem.
– volume: 71
  start-page: 104547
  year: 2020
  ident: D3SE01275A/cit59/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.104547
– volume: 141
  start-page: 19800
  year: 2019
  ident: D3SE01275A/cit52/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b09234
– volume: 1
  start-page: 1291
  year: 2021
  ident: D3SE01275A/cit117/1
  publication-title: Chem Catal.
  doi: 10.1016/j.checat.2021.09.012
– volume: 42
  start-page: 249
  year: 2017
  ident: D3SE01275A/cit47/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.10.051
– volume: 123
  start-page: 6257
  year: 2023
  ident: D3SE01275A/cit83/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.2c00515
– volume: 142
  start-page: 21861
  year: 2020
  ident: D3SE01275A/cit97/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c10636
– volume: 58
  start-page: 18971
  year: 2019
  ident: D3SE01275A/cit40/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201909312
– volume: 144
  start-page: 22549
  year: 2022
  ident: D3SE01275A/cit79/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c08600
– volume: 6
  start-page: 475
  year: 2021
  ident: D3SE01275A/cit54/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00824-7
– volume: 2
  start-page: 1700395
  year: 2018
  ident: D3SE01275A/cit77/1
  publication-title: Small Methods
  doi: 10.1002/smtd.201700395
– volume: 56
  start-page: 13800
  year: 2017
  ident: D3SE01275A/cit130/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201706602
– volume: 2
  start-page: 452
  year: 2020
  ident: D3SE01275A/cit115/1
  publication-title: Carbon Energy
  doi: 10.1002/cey2.47
– volume: 77
  start-page: 1273
  year: 2017
  ident: D3SE01275A/cit35/1
  publication-title: ECS Trans.
– volume: 2
  start-page: 1319
  year: 2012
  ident: D3SE01275A/cit90/1
  publication-title: ACS Catal.
  doi: 10.1021/cs300228p
– volume: 6
  start-page: 3136
  year: 2016
  ident: D3SE01275A/cit69/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b00643
– volume: 1
  start-page: 63
  year: 2018
  ident: D3SE01275A/cit65/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-017-0008-y
– volume: 486
  start-page: 43
  year: 2012
  ident: D3SE01275A/cit6/1
  publication-title: Nature
  doi: 10.1038/nature11115
– volume: 5
  start-page: 4973
  year: 2014
  ident: D3SE01275A/cit102/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5973
– volume: 16
  start-page: 1466
  year: 2023
  ident: D3SE01275A/cit5/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE03169H
– volume: 56
  start-page: 6937
  year: 2017
  ident: D3SE01275A/cit132/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201702473
– volume: 201
  start-page: 1212
  year: 1964
  ident: D3SE01275A/cit25/1
  publication-title: Nature
  doi: 10.1038/2011212a0
– volume: 3
  start-page: 856
  year: 2021
  ident: D3SE01275A/cit137/1
  publication-title: Carbon Energy
  doi: 10.1002/cey2.135
– volume: 11
  start-page: 74
  year: 2021
  ident: D3SE01275A/cit118/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03496
– volume: 166
  start-page: F3311
  year: 2019
  ident: D3SE01275A/cit70/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/2.0371907jes
– volume: 13
  start-page: 2900
  year: 2022
  ident: D3SE01275A/cit114/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-30520-3
– volume: 1
  start-page: 935
  year: 2018
  ident: D3SE01275A/cit134/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0164-8
– volume: 28
  start-page: 2108061
  year: 2022
  ident: D3SE01275A/cit10/1
  publication-title: J. Electrochem.
– volume: 12
  start-page: 13853
  year: 2022
  ident: D3SE01275A/cit34/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.2c02146
– volume: 11
  start-page: 1136
  year: 2021
  ident: D3SE01275A/cit86/1
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c04789
– volume: 1
  start-page: 1623
  year: 2009
  ident: D3SE01275A/cit55/1
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am900219g
– volume: 144
  start-page: 16524
  year: 2022
  ident: D3SE01275A/cit122/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c05779
– volume: 256
  start-page: 117849
  year: 2019
  ident: D3SE01275A/cit131/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.117849
– volume: 19
  start-page: 19
  year: 1989
  ident: D3SE01275A/cit26/1
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/BF01039385
– volume: 7
  start-page: 1127
  year: 2016
  ident: D3SE01275A/cit12/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b00216
– volume: 3
  start-page: 1044
  year: 2020
  ident: D3SE01275A/cit45/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-020-00546-1
– volume: 112
  start-page: 10629
  year: 2015
  ident: D3SE01275A/cit48/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1507159112
– volume: 1
  start-page: 658
  year: 2022
  ident: D3SE01275A/cit111/1
  publication-title: Nat. Synth.
  doi: 10.1038/s44160-022-00129-x
– volume: 1
  start-page: 552
  year: 2009
  ident: D3SE01275A/cit13/1
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.367
– volume: 7
  start-page: 16690
  year: 2019
  ident: D3SE01275A/cit108/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA03518D
– volume: 56
  start-page: 13944
  year: 2017
  ident: D3SE01275A/cit18/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201703864
– volume: 1
  start-page: 781
  year: 2018
  ident: D3SE01275A/cit112/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0146-x
– volume: 437
  start-page: 135320
  year: 2022
  ident: D3SE01275A/cit121/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.135320
– volume: 15
  start-page: 3033
  year: 2022
  ident: D3SE01275A/cit32/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE00061J
– volume: 5
  start-page: 311
  year: 2022
  ident: D3SE01275A/cit42/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-022-00772-9
– volume: 2
  start-page: 259
  year: 2019
  ident: D3SE01275A/cit30/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0237-3
– volume: 54
  start-page: 10102
  year: 2015
  ident: D3SE01275A/cit85/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201500569
– volume: 88
  start-page: 19
  year: 2018
  ident: D3SE01275A/cit50/1
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2018.01.011
– volume: 3
  start-page: 1396
  year: 2018
  ident: D3SE01275A/cit71/1
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.8b00516
– volume: 8
  start-page: 2102209
  year: 2021
  ident: D3SE01275A/cit36/1
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202102209
– volume: 5
  start-page: 7936
  year: 2012
  ident: D3SE01275A/cit101/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee21802j
– volume: 7
  start-page: 866
  year: 2022
  ident: D3SE01275A/cit127/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-022-01098-3
– volume: 4
  start-page: 1321
  year: 2010
  ident: D3SE01275A/cit103/1
  publication-title: ACS Nano
  doi: 10.1021/nn901850u
– volume: 12
  start-page: 2102688
  year: 2022
  ident: D3SE01275A/cit136/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202102688
– volume: 285
  start-page: 334
  year: 2015
  ident: D3SE01275A/cit24/1
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2015.03.047
– volume: 13
  start-page: 887
  year: 2021
  ident: D3SE01275A/cit57/1
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-021-00734-x
– volume: 18
  start-page: 2105329
  year: 2022
  ident: D3SE01275A/cit60/1
  publication-title: Small
  doi: 10.1002/smll.202105329
– volume: 595
  start-page: 361
  year: 2021
  ident: D3SE01275A/cit7/1
  publication-title: Nature
  doi: 10.1038/s41586-021-03482-7
– volume: 144
  start-page: 2171
  year: 2022
  ident: D3SE01275A/cit66/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c10814
– volume: 5
  start-page: 455
  year: 2022
  ident: D3SE01275A/cit33/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-022-00778-3
– volume: 5
  start-page: 900
  year: 2022
  ident: D3SE01275A/cit80/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-022-00846-8
– volume: 115
  start-page: 16087
  year: 2011
  ident: D3SE01275A/cit74/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp2042526
– volume: 11
  start-page: 5283
  year: 2020
  ident: D3SE01275A/cit98/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-18969-6
– volume: 168
  start-page: 014513
  year: 2021
  ident: D3SE01275A/cit91/1
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1945-7111/abdc64
– volume: 374
  start-page: 43
  year: 2019
  ident: D3SE01275A/cit53/1
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2019.04.028
– volume: 7
  start-page: 652
  year: 2022
  ident: D3SE01275A/cit31/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-022-01062-1
– volume: 264
  start-page: 118523
  year: 2020
  ident: D3SE01275A/cit140/1
  publication-title: Appl. Catal., B
  doi: 10.1016/j.apcatb.2019.118523
– volume: 33
  start-page: 886
  year: 2017
  ident: D3SE01275A/cit15/1
  publication-title: Acta Phys. Chim. Sin.
  doi: 10.3866/PKU.WHXB201702092
– volume: 5
  start-page: 1914
  year: 2018
  ident: D3SE01275A/cit49/1
  publication-title: ChemElectroChem
  doi: 10.1002/celc.201700939
– volume: 34
  start-page: 2202544
  year: 2022
  ident: D3SE01275A/cit120/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202202544
– volume: 11
  start-page: 2101222
  year: 2021
  ident: D3SE01275A/cit22/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202101222
– volume: 10
  start-page: 20323
  year: 2022
  ident: D3SE01275A/cit37/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D2TA03669J
– volume: 9
  start-page: 3736
  year: 2016
  ident: D3SE01275A/cit133/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE01867J
– volume: 59
  start-page: 19175
  year: 2020
  ident: D3SE01275A/cit126/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202006928
– volume: 4
  start-page: eaar7180
  year: 2018
  ident: D3SE01275A/cit4/1
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aar7180
– volume: 43
  start-page: 1918
  year: 2022
  ident: D3SE01275A/cit88/1
  publication-title: Chin. J. Catal.
  doi: 10.1016/S1872-2067(21)63993-1
– volume: 7
  start-page: 1775
  year: 2020
  ident: D3SE01275A/cit72/1
  publication-title: ChemElectroChem
  doi: 10.1002/celc.202000351
– volume: 60
  start-page: 8882
  year: 2021
  ident: D3SE01275A/cit89/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.202014711
– volume: 324
  start-page: 48
  year: 2009
  ident: D3SE01275A/cit1/1
  publication-title: Science
  doi: 10.1126/science.1172083
– volume: 354
  start-page: 1378
  year: 2016
  ident: D3SE01275A/cit2/1
  publication-title: Science
  doi: 10.1126/science.aal3303
– volume: 31
  start-page: 2102420
  year: 2021
  ident: D3SE01275A/cit43/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202102420
– volume: 1
  start-page: 922
  year: 2018
  ident: D3SE01275A/cit87/1
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0182-6
– volume: 1
  start-page: 100006
  year: 2022
  ident: D3SE01275A/cit116/1
  publication-title: Adv. Sensor Energy Mater.
  doi: 10.1016/j.asems.2022.100006
SSID ssj0002124257
Score 2.2655542
SecondaryResourceType review_article
Snippet After decades of effort, the performance of low-cost transition metal-nitrogen-carbon (M-N-C) catalysts has been significantly improved, positioning them as...
After decades of effort, the performance of low-cost transition metal–nitrogen–carbon (M–N–C) catalysts has been significantly improved, positioning them as...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 178
SubjectTerms Aqueous electrolytes
Carbon
Catalysts
Chemical reduction
Controllability
Electrocatalysts
Electrolytes
Electrolytic cells
Fuel cells
Fuel technology
Low cost
Nitrogen
Oxygen reduction reactions
Proton exchange membrane fuel cells
Transition metals
Working conditions
Title Low-cost transition metal-nitrogen-carbon electrocatalysts for the oxygen reduction reaction: operating conditions from aqueous electrolytes to fuel cells
URI https://www.proquest.com/docview/2915107969
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELe67gUeEP8mOgayBC9oMiyOHce8VaXTQIWXdWLwUsWOo06qmqlJBOVD8AH4tJzt_BsUCXixKseOlN7Pd2f77ncIPQcbJDkzEWGJkIQJHZGYQcNplCmlDRWpTU5-_yE6u2DvLvnlYPC9F7VUleql_rYzr-R_pAp9IFebJfsPkm1fCh3wG-QLLUgY2r-S8Sz_QnRelLbQw9oHX9mS0MmKwELd5DCP6GSjoLeuduMOa7ZFWbTRhfnXLQw73lgGVzcfnEjdBHzk15Zy2afl2qttFzTnElISMCc2eLZ-72pbeqqIrDKrY3sZUPS93vNelpbxyYYWcXZw69JPKp-nfUXmjTV15_xeF32qyGRpuv7Py7xy9yrLKwIKq-meeUaEj_Dhp83o-kiD2jAYEtSE2E71WVJCwuTJDT0d9-BIezo38DWAavMd-OJfv1mGk9ASq6ZhYexlO-_ZvzYqsXu4h_YpbDvoEO2Pp_O3s_bUDgy9VXINz20oX3WTbno23XZlb9PUknE-y_wuulNvNvDYI-ceGpj1fXS7R0H5AP1oMIQ7DOGdGMK_YggDhjBgCHsM4RZDuMHQa9wiCHcIwhZBuEYQ7iMIlzm2oMAOQQ_Rxel0Pjkjdb0OomkclCQRsdIs1ok9VTRSUBMEKQ8zxmHFs0AJHhgwaiwKojQT3ChlEi6MpElGpYGNwQEarvO1eYSw1EyZUPFMKMm4ZlLFMuFKpCJNZZTqEXrR_NcLXZPZ25oqq4ULqgjl4k14PnVyGY_Qs3bstadw2TnqqBHZol7ixYJKcIhPhIzkCB2AGNv5ndQP__TgMbrVYfsIDctNZZ6AA1uqpzWqfgI3Xajn
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-cost+transition+metal-nitrogen-carbon+electrocatalysts+for+the+oxygen+reduction+reaction%3A+operating+conditions+from+aqueous+electrolytes+to+fuel+cells&rft.jtitle=Sustainable+energy+%26+fuels&rft.au=Cui%2C+Li-Ting&rft.au=Wang%2C+Yu-Cheng&rft.au=Zhou%2C+Zhi-You&rft.au=Lin%2C+Wen-Feng&rft.date=2024-01-16&rft.eissn=2398-4902&rft.volume=8&rft.issue=2&rft.spage=178&rft.epage=191&rft_id=info:doi/10.1039%2Fd3se01275a&rft.externalDocID=d3se01275a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2398-4902&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2398-4902&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2398-4902&client=summon