Coordination changes and auto-hydroxylation of FIH-1: Uncoupled O2-activation in a human hypoxia sensor

Hypoxia sensing is the generic term for pO2-sensing in humans and other higher organisms. These cellular responses to pO2 are largely controlled by enzymes that belong to the Fe(II) alpha-ketoglutarate (alphaKG) dependent dioxygenase superfamily, including the human enzyme called the factor inhibiti...

Full description

Saved in:
Bibliographic Details
Published inJournal of inorganic biochemistry Vol. 102; no. 12; pp. 2120 - 2129
Main Authors Chen, Yuan-Han, Comeaux, Lindsay M., Herbst, Robert W., Saban, Evren, Kennedy, David C., Maroney, Michael J., Knapp, Michael J.
Format Journal Article
LanguageEnglish
Published United States 01.12.2008
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Hypoxia sensing is the generic term for pO2-sensing in humans and other higher organisms. These cellular responses to pO2 are largely controlled by enzymes that belong to the Fe(II) alpha-ketoglutarate (alphaKG) dependent dioxygenase superfamily, including the human enzyme called the factor inhibiting HIF (FIH-1), which couples O2-activation to the hydroxylation of the hypoxia inducible factor alpha (HIFalpha). Uncoupled O2-activation by human FIH-1 was studied by exposing the resting form of FIH-1 (alphaKG + Fe)FIH-1, to air in the absence of HIFalpha. Uncoupling lead to two distinct enzyme oxidations, one a purple chromophore (lambda(max) = 583 nm) arising from enzyme auto-hydroxylation of Trp296, forming an Fe(III)-O-Trp296 chromophore [Y.-H. Chen, L.M. Comeaux, S.J. Eyles, M.J. Knapp, Chem. Commun. (2008), doi:10.1039/B809099H]; the other a yellow chromophore due to Fe(III) in the active site, which under some conditions also contained variable levels of an oxygenated surface residue (oxo)Met275. The kinetics of purple FIH-1 formation were independent of Fe(II) and alphaKG concentrations, however, product yield was saturable with increasing [alphaKG] and required excess Fe(II). Yellow FIH-1 was formed from (succinate+Fe)FIH-1, or by glycerol addition to (alphaKG+Fe)FIH-1, suggesting that glycerol could intercept the active oxidant from the FIH-1 active site and prevent hydroxylation. Both purple and yellow FIH-1 contained high-spin, rhombic Fe(III) centers, as shown by low temperature EPR. XAS indicated distorted octahedral Fe(III) geometries, with subtle differences in inner-shell ligands for yellow and purple FIH-1. EPR of Co(II)-substituted FIH-1 (alphaKG + Co)FIH-1, indicated a mixture of 5-coordinate and 6-coordinate enzyme forms, suggesting that resting FIH-1 can readily undergo uncoupled O2-activation by loss of an H2O ligand from the metal center.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0162-0134
1873-3344
1873-3344
DOI:10.1016/j.jinorgbio.2008.07.018