Artificial neural networks to estimate the productivity of soybeans and corn by chlorophyll readings

Crop productivity prediction techniques assist with adjusting for potential agronomic problems during the growing season. Several authors have reported that there is a correlation between leaf chlorophyll (Chl) content and yield. This study developed independent artificial neural network (ANN) model...

Full description

Saved in:
Bibliographic Details
Published inJournal of plant nutrition Vol. 41; no. 10; pp. 1285 - 1292
Main Authors Michelon, Gabriela K., de Menezes, Paulo L., Bazzi, Claudio L., Jasse, Ermínio P., Magalhães, Paulo S. G., Borges, Lígia F.
Format Journal Article
LanguageEnglish
Published Philadelphia Taylor & Francis Ltd 15.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Crop productivity prediction techniques assist with adjusting for potential agronomic problems during the growing season. Several authors have reported that there is a correlation between leaf chlorophyll (Chl) content and yield. This study developed independent artificial neural network (ANN) models for soybean and corn in order to predict the crops' productive potentials using their respective yields and leaf Chl content data, measured at three stages of plant development. The ANN was deemed ready for testing through verification of the mean squared error and the number of epochs while training the neural network. While the model obtained when Chl was measured in the V6 stage of development explained more than 50% of the productivity data in corn, the models obtained for soybean did not explain more than 10% of the observed data. Attempts to improve the model through changes of the architecture of the neural network did not show any improvement in model.
ISSN:0190-4167
1532-4087
DOI:10.1080/01904167.2018.1447579