Polymersomes with micellar patches

[Display omitted] Hollow block copolymer particles called polymer vesicles (polymersomes) serve as versatile containers for compartmentalization in synthetic biology and drug delivery. Recently, there has been growing interest in using polymersomes as colloidal building blocks for creating higher-or...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 671; pp. 449 - 456
Main Authors Wong, Chin Ken, Lai, Rebecca Y., Stenzel, Martina H.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.10.2024
Online AccessGet full text

Cover

Loading…
More Information
Summary:[Display omitted] Hollow block copolymer particles called polymer vesicles (polymersomes) serve as versatile containers for compartmentalization in synthetic biology and drug delivery. Recently, there has been growing interest in using polymersomes as colloidal building blocks for creating higher-order clustered structures. Most reports thus far rely on the use of DNA base-pairing interactions to “glue” polymersomes with other colloidal components. In this study, we present two alternative electrostatically driven approaches to assemble polymersomes and model colloids (micelles) into hybrid clusters. The first approach uses pH to manipulate electrostatic interactions and effectively control the clustering extent of micellar subunits on polymersomes, while the second approach relies on the hydrolysis of an acid trigger, glucono delta-lactone (GDL), to introduce temporal control over clustering. We envisage our approaches and structures reported herein will help inspire the creation of new prospects for materials science and biomedical applications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2024.05.177