Phase homogeneity mediated charge-carrier balance in two-step-method halide perovskite photovoltaics

The multi-scale chemical phase heterogeneity of halide perovskites seriously affects the physical functional integrity of semiconductors and the performance of photovoltaic devices. However, the phase homogeneity in two-step-method perovskites (TSPs) has rarely been investigated. Here, we elaborate...

Full description

Saved in:
Bibliographic Details
Published inEnergy & environmental science Vol. 18; no. 3; pp. 131 - 1319
Main Authors Qu, Duo, Shang, Chuanzhen, Yang, Xiaoyu, Wang, Chenyun, Zhou, Bin, Qin, Qichao, Gao, Lei, Qiao, Jingyuan, Guo, Qiang, Yang, Wenqiang, Wang, Kai, Zhu, Rui, Tu, Yongguang, Huang, Wei
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 04.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The multi-scale chemical phase heterogeneity of halide perovskites seriously affects the physical functional integrity of semiconductors and the performance of photovoltaic devices. However, the phase homogeneity in two-step-method perovskites (TSPs) has rarely been investigated. Here, we elaborate on the severe heterogeneity of the FAMA-based TSP film and found that residual PbI 2 crystallites and Pb 0 species accumulate at the top while a Cl/MA-rich interface is present at the bottom, impeding carrier nonequilibrium transport in the vertical direction. The homogeneity of the TSP film is reinforced by chemical tailoring with 4-methoxyphenethyl ammonium chloride, thus achieving superior structural stability and a charge carrier balance dynamic process. The target TSP p-i-n device achieves a recorded power conversion efficiency of 25.12% under 1-sun illumination (certified at 24.01%). This study uncovers the hidden physicochemical properties of the TSP film, guiding the understanding of microscopic homogeneity and functional integrity and the design of efficient two-step-method inverted perovskite solar cells. Phase homogeneity mediated charge-carrier balance reveals the heterogeneity issue of two-step-method perovskite films.
AbstractList The multi-scale chemical phase heterogeneity of halide perovskites seriously affects the physical functional integrity of semiconductors and the performance of photovoltaic devices. However, the phase homogeneity in two-step-method perovskites (TSPs) has rarely been investigated. Here, we elaborate on the severe heterogeneity of the FAMA-based TSP film and found that residual PbI 2 crystallites and Pb 0 species accumulate at the top while a Cl/MA-rich interface is present at the bottom, impeding carrier nonequilibrium transport in the vertical direction. The homogeneity of the TSP film is reinforced by chemical tailoring with 4-methoxyphenethyl ammonium chloride, thus achieving superior structural stability and a charge carrier balance dynamic process. The target TSP p-i-n device achieves a recorded power conversion efficiency of 25.12% under 1-sun illumination (certified at 24.01%). This study uncovers the hidden physicochemical properties of the TSP film, guiding the understanding of microscopic homogeneity and functional integrity and the design of efficient two-step-method inverted perovskite solar cells. Phase homogeneity mediated charge-carrier balance reveals the heterogeneity issue of two-step-method perovskite films.
The multi-scale chemical phase heterogeneity of halide perovskites seriously affects the physical functional integrity of semiconductors and the performance of photovoltaic devices. However, the phase homogeneity in two-step-method perovskites (TSPs) has rarely been investigated. Here, we elaborate on the severe heterogeneity of the FAMA-based TSP film and found that residual PbI2 crystallites and Pb0 species accumulate at the top while a Cl/MA-rich interface is present at the bottom, impeding carrier nonequilibrium transport in the vertical direction. The homogeneity of the TSP film is reinforced by chemical tailoring with 4-methoxyphenethyl ammonium chloride, thus achieving superior structural stability and a charge carrier balance dynamic process. The target TSP p–i–n device achieves a recorded power conversion efficiency of 25.12% under 1-sun illumination (certified at 24.01%). This study uncovers the hidden physicochemical properties of the TSP film, guiding the understanding of microscopic homogeneity and functional integrity and the design of efficient two-step-method inverted perovskite solar cells.
The multi-scale chemical phase heterogeneity of halide perovskites seriously affects the physical functional integrity of semiconductors and the performance of photovoltaic devices. However, the phase homogeneity in two-step-method perovskites (TSPs) has rarely been investigated. Here, we elaborate on the severe heterogeneity of the FAMA-based TSP film and found that residual PbI 2 crystallites and Pb 0 species accumulate at the top while a Cl/MA-rich interface is present at the bottom, impeding carrier nonequilibrium transport in the vertical direction. The homogeneity of the TSP film is reinforced by chemical tailoring with 4-methoxyphenethyl ammonium chloride, thus achieving superior structural stability and a charge carrier balance dynamic process. The target TSP p–i–n device achieves a recorded power conversion efficiency of 25.12% under 1-sun illumination (certified at 24.01%). This study uncovers the hidden physicochemical properties of the TSP film, guiding the understanding of microscopic homogeneity and functional integrity and the design of efficient two-step-method inverted perovskite solar cells.
Author Wang, Chenyun
Zhou, Bin
Tu, Yongguang
Yang, Xiaoyu
Gao, Lei
Qiao, Jingyuan
Guo, Qiang
Yang, Wenqiang
Huang, Wei
Qin, Qichao
Wang, Kai
Qu, Duo
Shang, Chuanzhen
Zhu, Rui
AuthorAffiliation International Research Institute for Multidisciplinary Science
Shaanxi Key Laboratory of Flexible Electronics
Peking University
School of Physics
State Key Laboratory for Artificial Microstructure and Mesoscopic Physics
MIIT Key Laboratory of Flexible Electronics
Beihang University
Institute of Atomic Manufacturing
Institute of Flexible Electronics (IFE)
Frontiers Science Center for Flexible Electronics
Northwestern Polytechnical University
Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter
Henan Institute of Advanced Technology
Zhengzhou University
AuthorAffiliation_xml – name: Zhengzhou University
– name: Northwestern Polytechnical University
– name: State Key Laboratory for Artificial Microstructure and Mesoscopic Physics
– name: School of Physics
– name: Henan Institute of Advanced Technology
– name: Institute of Atomic Manufacturing
– name: Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter
– name: Shaanxi Key Laboratory of Flexible Electronics
– name: Peking University
– name: Frontiers Science Center for Flexible Electronics
– name: Beihang University
– name: Institute of Flexible Electronics (IFE)
– name: MIIT Key Laboratory of Flexible Electronics
– name: International Research Institute for Multidisciplinary Science
Author_xml – sequence: 1
  givenname: Duo
  surname: Qu
  fullname: Qu, Duo
– sequence: 2
  givenname: Chuanzhen
  surname: Shang
  fullname: Shang, Chuanzhen
– sequence: 3
  givenname: Xiaoyu
  surname: Yang
  fullname: Yang, Xiaoyu
– sequence: 4
  givenname: Chenyun
  surname: Wang
  fullname: Wang, Chenyun
– sequence: 5
  givenname: Bin
  surname: Zhou
  fullname: Zhou, Bin
– sequence: 6
  givenname: Qichao
  surname: Qin
  fullname: Qin, Qichao
– sequence: 7
  givenname: Lei
  surname: Gao
  fullname: Gao, Lei
– sequence: 8
  givenname: Jingyuan
  surname: Qiao
  fullname: Qiao, Jingyuan
– sequence: 9
  givenname: Qiang
  surname: Guo
  fullname: Guo, Qiang
– sequence: 10
  givenname: Wenqiang
  surname: Yang
  fullname: Yang, Wenqiang
– sequence: 11
  givenname: Kai
  surname: Wang
  fullname: Wang, Kai
– sequence: 12
  givenname: Rui
  surname: Zhu
  fullname: Zhu, Rui
– sequence: 13
  givenname: Yongguang
  surname: Tu
  fullname: Tu, Yongguang
– sequence: 14
  givenname: Wei
  surname: Huang
  fullname: Huang, Wei
BookMark eNptkUtPwzAQhC1UJNrChTuSJW5IgXUSJ_ERlfKQKsEBzpGxN41LEgfbLeq_J1AeEuK0c_hmVjs7IaPOdkjIMYNzBom40CkipCkTao-MWc7TiOeQjb51JuIDMvF-BZDFkIsx0Q-19Ehr29oldmjClraojQyoqaqlW2KkpHMGHX2WjewUUtPR8GYjH7CPWgy11bSWjdFIe3R2419MGGRtg93YJkij_CHZr2Tj8ehrTsnT9fxxdhst7m_uZpeLSMUFCxGrqiLVFSsQMGaac4VFConOc854Wig5XCdAAQIUkiVxFmcoc5Uhw0JwIZMpOd3l9s6-rtGHcmXXrhtWlgnLEpYDCD5QZztKOeu9w6rsnWml25YMyo8Wy6t0Pv9scTbA8AdWJshgbBecNM3_lpOdxXn1E_37mOQde3-BeA
CitedBy_id crossref_primary_10_1002_adfm_202421402
Cites_doi 10.1126/science.abn3148
10.1002/adfm.201401872
10.1039/C9EE01773A
10.1016/j.joule.2019.06.014
10.1002/adma.201703852
10.1002/adma.202006435
10.1021/acs.jpcc.9b10185
10.1038/s41586-024-07764-8
10.1016/j.joule.2023.08.004
10.1038/s41586-023-06637-w
10.1016/j.nanoen.2023.108250
10.1126/science.aaz5074
10.1002/adma.201604048
10.1002/adma.202002585
10.1038/s41560-024-01567-x
10.1126/science.abm5784
10.1002/adma.202306051
10.1002/smll.202307645
10.1016/j.mtener.2020.100551
10.1038/s41560-021-00831-8
10.1002/aenm.202102973
10.1016/j.scib.2024.06.029
10.1126/science.adg3755
10.1002/adma.202312014
10.1002/solr.202100457
10.1016/j.cej.2022.136622
10.1021/jacs.6b06320
10.1038/nature12340
10.1016/j.nanoen.2020.105421
10.1016/j.nanoen.2020.105655
10.1038/s41586-024-07723-3
10.1002/adma.202108357
10.1038/s41586-023-06784-0
10.1002/aenm.201500477
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2025
Copyright_xml – notice: Copyright Royal Society of Chemistry 2025
DBID AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
DOI 10.1039/d4ee04419c
DatabaseName CrossRef
Electronics & Communications Abstracts
Environment Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Advanced Technologies Database with Aerospace
Environment Abstracts
DatabaseTitle CrossRef
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Engineering Research Database
Environment Abstracts
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1754-5706
EndPage 1319
ExternalDocumentID 10_1039_D4EE04419C
d4ee04419c
GroupedDBID 0-7
0R~
29G
4.4
5GY
705
70~
7~J
AAEMU
AAIWI
AAJAE
AANOJ
AARTK
AAWGC
AAXHV
AAXPP
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACGFO
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AEFDR
AENEX
AENGV
AESAV
AETIL
AFLYV
AFOGI
AFRAH
AFRZK
AFVBQ
AGEGJ
AGRSR
AHGCF
AKBGW
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ANUXI
APEMP
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CS3
EBS
ECGLT
EE0
EF-
GGIMP
GNO
H13
HZ~
H~N
J3I
M4U
N9A
O-G
O9-
P2P
RAOCF
RCNCU
RPMJG
RRC
RSCEA
RVUXY
SKA
SLH
TOV
AAYXX
CITATION
7SP
7ST
7TB
8FD
C1K
FR3
L7M
SOI
ID FETCH-LOGICAL-c281t-1ff84df18e0e21d55ce8403d7751548cad4e90c0e008a132626ea7c6e1e8959a3
ISSN 1754-5692
IngestDate Mon Jun 30 11:56:32 EDT 2025
Tue Jul 01 01:46:04 EDT 2025
Thu Apr 24 23:09:51 EDT 2025
Tue May 27 12:02:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c281t-1ff84df18e0e21d55ce8403d7751548cad4e90c0e008a132626ea7c6e1e8959a3
Notes https://doi.org/10.1039/d4ee04419c
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7631-3589
0000-0002-1402-4148
0000-0003-1012-1781
0000-0002-3700-6591
PQID 3163170095
PQPubID 2047494
PageCount 1
ParticipantIDs crossref_primary_10_1039_D4EE04419C
rsc_primary_d4ee04419c
crossref_citationtrail_10_1039_D4EE04419C
proquest_journals_3163170095
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-02-04
PublicationDateYYYYMMDD 2025-02-04
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-04
  day: 04
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Energy & environmental science
PublicationYear 2025
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Jacobsson (D4EE04419C/cit26/1) 2016; 138
Kim (D4EE04419C/cit32/1) 2019; 3
Azmi (D4EE04419C/cit31/1) 2022; 376
Bai (D4EE04419C/cit13/1) 2022; 378
Niu (D4EE04419C/cit30/1) 2021; 12
Huang (D4EE04419C/cit2/1) 2023; 623
Jiang (D4EE04419C/cit19/1) 2017; 2
Yu (D4EE04419C/cit22/1) 2014; 24
Liu (D4EE04419C/cit3/1) 2024; 633
Ren (D4EE04419C/cit25/1) 2021; 81
Chen (D4EE04419C/cit10/1) 2016; 28
Liu (D4EE04419C/cit4/1) 2024; 632
Jiang (D4EE04419C/cit20/1) 2017; 29
Wang (D4EE04419C/cit35/1) 2024; 36
Yang (D4EE04419C/cit12/1) 2021; 33
Zeng (D4EE04419C/cit33/1) 2023; 35
Liang (D4EE04419C/cit14/1) 2023; 624
Xiao (D4EE04419C/cit6/1) 2024; 9
Yang (D4EE04419C/cit18/1) 2020; 32
Xu (D4EE04419C/cit28/1) 2020; 367
D4EE04419C/cit1/1
Deng (D4EE04419C/cit27/1) 2021; 6
Yang (D4EE04419C/cit11/1) 2024; 69
Ma (D4EE04419C/cit16/1) 2023; 108
Yang (D4EE04419C/cit17/1) 2021; 5
Burschka (D4EE04419C/cit15/1) 2013; 499
Bing (D4EE04419C/cit21/1) 2020; 18
Francisco-López (D4EE04419C/cit36/1) 2020; 124
Wang (D4EE04419C/cit34/1) 2022; 34
Conings (D4EE04419C/cit7/1) 2015; 5
Noel (D4EE04419C/cit24/1) 2019; 12
Wang (D4EE04419C/cit8/1) 2023; 20
Zhu (D4EE04419C/cit9/1) 2023; 7
Zhidkov (D4EE04419C/cit23/1) 2021; 79
Wang (D4EE04419C/cit29/1) 2022; 444
Zhang (D4EE04419C/cit5/1) 2023; 380
References_xml – volume: 378
  start-page: 747
  year: 2022
  ident: D4EE04419C/cit13/1
  publication-title: Science
  doi: 10.1126/science.abn3148
– volume: 24
  start-page: 7102
  year: 2014
  ident: D4EE04419C/cit22/1
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201401872
– volume: 12
  start-page: 3063
  year: 2019
  ident: D4EE04419C/cit24/1
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE01773A
– volume: 3
  start-page: 2179
  year: 2019
  ident: D4EE04419C/cit32/1
  publication-title: Joule
  doi: 10.1016/j.joule.2019.06.014
– volume: 29
  start-page: 1703852
  year: 2017
  ident: D4EE04419C/cit20/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201703852
– volume: 33
  start-page: 2006435
  year: 2021
  ident: D4EE04419C/cit12/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202006435
– volume: 124
  start-page: 3448
  year: 2020
  ident: D4EE04419C/cit36/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b10185
– volume: 633
  start-page: 359
  year: 2024
  ident: D4EE04419C/cit3/1
  publication-title: Nature
  doi: 10.1038/s41586-024-07764-8
– volume: 7
  start-page: 2361
  year: 2023
  ident: D4EE04419C/cit9/1
  publication-title: Joule
  doi: 10.1016/j.joule.2023.08.004
– volume: 623
  start-page: 531
  year: 2023
  ident: D4EE04419C/cit2/1
  publication-title: Nature
  doi: 10.1038/s41586-023-06637-w
– volume: 108
  start-page: 108250
  year: 2023
  ident: D4EE04419C/cit16/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2023.108250
– volume: 2
  start-page: 1
  year: 2017
  ident: D4EE04419C/cit19/1
  publication-title: Nat. Energy
– volume: 367
  start-page: 1097
  year: 2020
  ident: D4EE04419C/cit28/1
  publication-title: Science
  doi: 10.1126/science.aaz5074
– volume: 28
  start-page: 10718
  year: 2016
  ident: D4EE04419C/cit10/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604048
– volume: 32
  start-page: 2002585
  year: 2020
  ident: D4EE04419C/cit18/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002585
– volume: 9
  start-page: 999
  year: 2024
  ident: D4EE04419C/cit6/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-024-01567-x
– volume: 376
  start-page: 73
  year: 2022
  ident: D4EE04419C/cit31/1
  publication-title: Science
  doi: 10.1126/science.abm5784
– volume: 35
  start-page: 2306051
  year: 2023
  ident: D4EE04419C/cit33/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202306051
– volume: 20
  start-page: 2307645
  year: 2023
  ident: D4EE04419C/cit8/1
  publication-title: Small
  doi: 10.1002/smll.202307645
– volume: 18
  start-page: 100551
  year: 2020
  ident: D4EE04419C/cit21/1
  publication-title: Mater. Today Energy
  doi: 10.1016/j.mtener.2020.100551
– volume: 6
  start-page: 633
  year: 2021
  ident: D4EE04419C/cit27/1
  publication-title: Nat. Energy
  doi: 10.1038/s41560-021-00831-8
– volume: 12
  start-page: 2102973
  year: 2021
  ident: D4EE04419C/cit30/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202102973
– volume: 69
  start-page: 2555
  year: 2024
  ident: D4EE04419C/cit11/1
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2024.06.029
– volume: 380
  start-page: 404
  year: 2023
  ident: D4EE04419C/cit5/1
  publication-title: Science
  doi: 10.1126/science.adg3755
– volume: 36
  start-page: 2312014
  year: 2024
  ident: D4EE04419C/cit35/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202312014
– volume: 5
  start-page: 2100457
  year: 2021
  ident: D4EE04419C/cit17/1
  publication-title: Sol. RRL
  doi: 10.1002/solr.202100457
– ident: D4EE04419C/cit1/1
– volume: 444
  start-page: 136622
  year: 2022
  ident: D4EE04419C/cit29/1
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2022.136622
– volume: 138
  start-page: 10331
  year: 2016
  ident: D4EE04419C/cit26/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b06320
– volume: 499
  start-page: 316
  year: 2013
  ident: D4EE04419C/cit15/1
  publication-title: Nature
  doi: 10.1038/nature12340
– volume: 79
  start-page: 105421
  year: 2021
  ident: D4EE04419C/cit23/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105421
– volume: 81
  start-page: 105655
  year: 2021
  ident: D4EE04419C/cit25/1
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2020.105655
– volume: 632
  start-page: 536
  year: 2024
  ident: D4EE04419C/cit4/1
  publication-title: Nature
  doi: 10.1038/s41586-024-07723-3
– volume: 34
  start-page: 2108357
  year: 2022
  ident: D4EE04419C/cit34/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202108357
– volume: 624
  start-page: 557
  year: 2023
  ident: D4EE04419C/cit14/1
  publication-title: Nature
  doi: 10.1038/s41586-023-06784-0
– volume: 5
  start-page: 1500477
  year: 2015
  ident: D4EE04419C/cit7/1
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500477
SSID ssj0062079
Score 2.5158215
Snippet The multi-scale chemical phase heterogeneity of halide perovskites seriously affects the physical functional integrity of semiconductors and the performance of...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 131
SubjectTerms Ammonium
Ammonium chloride
Charge efficiency
Chloride transport
Crystallites
Crystals
Current carriers
Energy conversion efficiency
Heterogeneity
Homogeneity
Integrity
Perovskites
Photovoltaic cells
Photovoltaics
Physicochemical properties
Semiconductors
Solar cells
Structural stability
Title Phase homogeneity mediated charge-carrier balance in two-step-method halide perovskite photovoltaics
URI https://www.proquest.com/docview/3163170095
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67gUeEF8ThYEswQtCGbbz6cdRChNICKRNjKfKtS9qpZFUXQIa_wL_NGcnTtLRh8FL1Lp2pOR-Pd-d735HyAstQOG-qQIjWR6g_c8DlWaRPS7MM6ZDS1Bisy0-JSdn0Yfz-Hw0-j3IWqqrxZH-tbOu5H-kimMoV1sl-w-S7W6KA_gZ5YtXlDBebyTjz0tlKYPL7yVOAWtPu0IQa0Q6BiQItNq4lnQLm8GoHUFI9bMMULTroGkebbuprAxY_uLyx6WN5b5aL8uqRLVVKZ8K70P3TaGgRcugQM6XVfYY-VI7VVaXXfzGh6WnyxqN0WVff_at_eF8pcqrug_v--lQXNXFMDQhXKl300y41aZpHAVx0jS7O4LBWMqS3Sq499CdPuVhm_QK_qvcqfdZaGlT30azGUP7Tk773c2f6F_b9LpURHcIH8p5v3aP7Av0OcSY7B9_fPP-q9_YE8EcdWP3VJ7tNpSv-9Xb9k3vtOxtfEcZZ7mc3iV3WpeDHjf4uUdGUNwntwdElA-IcUiiAyRRjyS6jSTaIomuCnoNSbRBEu2RRLeQ9JCcvZudTk-Ctv9GoEXGq4DneRaZnGfAQHATxxqyiIUmTWPr6GplIpBMM0A7UnH0A0QCKtUJcMhkLFV4QMZFWcAjQrXkC2Eg1lyjB2-YNFkuRGbyKAeVcJiQl_6tzXVLTm97pFzM_5bPhDzv5q4bSpadsw79y5-3f9nLeYjehyWklPGEHKBAuvX4JODW6cc3uvsTcqsH_CEZV5sanqJ1Wi2etaj5Az02kTQ
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+homogeneity+mediated+charge-carrier+balance+in+two-step-method+halide+perovskite+photovoltaics&rft.jtitle=Energy+%26+environmental+science&rft.au=Qu%2C+Duo&rft.au=Shang%2C+Chuanzhen&rft.au=Yang%2C+Xiaoyu&rft.au=Wang%2C+Chenyun&rft.date=2025-02-04&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=18&rft.issue=3&rft.spage=1310&rft.epage=1319&rft_id=info:doi/10.1039%2FD4EE04419C&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D4EE04419C
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon