Phase homogeneity mediated charge-carrier balance in two-step-method halide perovskite photovoltaics
The multi-scale chemical phase heterogeneity of halide perovskites seriously affects the physical functional integrity of semiconductors and the performance of photovoltaic devices. However, the phase homogeneity in two-step-method perovskites (TSPs) has rarely been investigated. Here, we elaborate...
Saved in:
Published in | Energy & environmental science Vol. 18; no. 3; pp. 131 - 1319 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
04.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The multi-scale chemical phase heterogeneity of halide perovskites seriously affects the physical functional integrity of semiconductors and the performance of photovoltaic devices. However, the phase homogeneity in two-step-method perovskites (TSPs) has rarely been investigated. Here, we elaborate on the severe heterogeneity of the FAMA-based TSP film and found that residual PbI
2
crystallites and Pb
0
species accumulate at the top while a Cl/MA-rich interface is present at the bottom, impeding carrier nonequilibrium transport in the vertical direction. The homogeneity of the TSP film is reinforced by chemical tailoring with 4-methoxyphenethyl ammonium chloride, thus achieving superior structural stability and a charge carrier balance dynamic process. The target TSP p-i-n device achieves a recorded power conversion efficiency of 25.12% under 1-sun illumination (certified at 24.01%). This study uncovers the hidden physicochemical properties of the TSP film, guiding the understanding of microscopic homogeneity and functional integrity and the design of efficient two-step-method inverted perovskite solar cells.
Phase homogeneity mediated charge-carrier balance reveals the heterogeneity issue of two-step-method perovskite films. |
---|---|
AbstractList | The multi-scale chemical phase heterogeneity of halide perovskites seriously affects the physical functional integrity of semiconductors and the performance of photovoltaic devices. However, the phase homogeneity in two-step-method perovskites (TSPs) has rarely been investigated. Here, we elaborate on the severe heterogeneity of the FAMA-based TSP film and found that residual PbI
2
crystallites and Pb
0
species accumulate at the top while a Cl/MA-rich interface is present at the bottom, impeding carrier nonequilibrium transport in the vertical direction. The homogeneity of the TSP film is reinforced by chemical tailoring with 4-methoxyphenethyl ammonium chloride, thus achieving superior structural stability and a charge carrier balance dynamic process. The target TSP p-i-n device achieves a recorded power conversion efficiency of 25.12% under 1-sun illumination (certified at 24.01%). This study uncovers the hidden physicochemical properties of the TSP film, guiding the understanding of microscopic homogeneity and functional integrity and the design of efficient two-step-method inverted perovskite solar cells.
Phase homogeneity mediated charge-carrier balance reveals the heterogeneity issue of two-step-method perovskite films. The multi-scale chemical phase heterogeneity of halide perovskites seriously affects the physical functional integrity of semiconductors and the performance of photovoltaic devices. However, the phase homogeneity in two-step-method perovskites (TSPs) has rarely been investigated. Here, we elaborate on the severe heterogeneity of the FAMA-based TSP film and found that residual PbI2 crystallites and Pb0 species accumulate at the top while a Cl/MA-rich interface is present at the bottom, impeding carrier nonequilibrium transport in the vertical direction. The homogeneity of the TSP film is reinforced by chemical tailoring with 4-methoxyphenethyl ammonium chloride, thus achieving superior structural stability and a charge carrier balance dynamic process. The target TSP p–i–n device achieves a recorded power conversion efficiency of 25.12% under 1-sun illumination (certified at 24.01%). This study uncovers the hidden physicochemical properties of the TSP film, guiding the understanding of microscopic homogeneity and functional integrity and the design of efficient two-step-method inverted perovskite solar cells. The multi-scale chemical phase heterogeneity of halide perovskites seriously affects the physical functional integrity of semiconductors and the performance of photovoltaic devices. However, the phase homogeneity in two-step-method perovskites (TSPs) has rarely been investigated. Here, we elaborate on the severe heterogeneity of the FAMA-based TSP film and found that residual PbI 2 crystallites and Pb 0 species accumulate at the top while a Cl/MA-rich interface is present at the bottom, impeding carrier nonequilibrium transport in the vertical direction. The homogeneity of the TSP film is reinforced by chemical tailoring with 4-methoxyphenethyl ammonium chloride, thus achieving superior structural stability and a charge carrier balance dynamic process. The target TSP p–i–n device achieves a recorded power conversion efficiency of 25.12% under 1-sun illumination (certified at 24.01%). This study uncovers the hidden physicochemical properties of the TSP film, guiding the understanding of microscopic homogeneity and functional integrity and the design of efficient two-step-method inverted perovskite solar cells. |
Author | Wang, Chenyun Zhou, Bin Tu, Yongguang Yang, Xiaoyu Gao, Lei Qiao, Jingyuan Guo, Qiang Yang, Wenqiang Huang, Wei Qin, Qichao Wang, Kai Qu, Duo Shang, Chuanzhen Zhu, Rui |
AuthorAffiliation | International Research Institute for Multidisciplinary Science Shaanxi Key Laboratory of Flexible Electronics Peking University School of Physics State Key Laboratory for Artificial Microstructure and Mesoscopic Physics MIIT Key Laboratory of Flexible Electronics Beihang University Institute of Atomic Manufacturing Institute of Flexible Electronics (IFE) Frontiers Science Center for Flexible Electronics Northwestern Polytechnical University Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter Henan Institute of Advanced Technology Zhengzhou University |
AuthorAffiliation_xml | – name: Zhengzhou University – name: Northwestern Polytechnical University – name: State Key Laboratory for Artificial Microstructure and Mesoscopic Physics – name: School of Physics – name: Henan Institute of Advanced Technology – name: Institute of Atomic Manufacturing – name: Frontiers Science Center for Nano-optoelectronics & Collaborative Innovation Center of Quantum Matter – name: Shaanxi Key Laboratory of Flexible Electronics – name: Peking University – name: Frontiers Science Center for Flexible Electronics – name: Beihang University – name: Institute of Flexible Electronics (IFE) – name: MIIT Key Laboratory of Flexible Electronics – name: International Research Institute for Multidisciplinary Science |
Author_xml | – sequence: 1 givenname: Duo surname: Qu fullname: Qu, Duo – sequence: 2 givenname: Chuanzhen surname: Shang fullname: Shang, Chuanzhen – sequence: 3 givenname: Xiaoyu surname: Yang fullname: Yang, Xiaoyu – sequence: 4 givenname: Chenyun surname: Wang fullname: Wang, Chenyun – sequence: 5 givenname: Bin surname: Zhou fullname: Zhou, Bin – sequence: 6 givenname: Qichao surname: Qin fullname: Qin, Qichao – sequence: 7 givenname: Lei surname: Gao fullname: Gao, Lei – sequence: 8 givenname: Jingyuan surname: Qiao fullname: Qiao, Jingyuan – sequence: 9 givenname: Qiang surname: Guo fullname: Guo, Qiang – sequence: 10 givenname: Wenqiang surname: Yang fullname: Yang, Wenqiang – sequence: 11 givenname: Kai surname: Wang fullname: Wang, Kai – sequence: 12 givenname: Rui surname: Zhu fullname: Zhu, Rui – sequence: 13 givenname: Yongguang surname: Tu fullname: Tu, Yongguang – sequence: 14 givenname: Wei surname: Huang fullname: Huang, Wei |
BookMark | eNptkUtPwzAQhC1UJNrChTuSJW5IgXUSJ_ERlfKQKsEBzpGxN41LEgfbLeq_J1AeEuK0c_hmVjs7IaPOdkjIMYNzBom40CkipCkTao-MWc7TiOeQjb51JuIDMvF-BZDFkIsx0Q-19Ehr29oldmjClraojQyoqaqlW2KkpHMGHX2WjewUUtPR8GYjH7CPWgy11bSWjdFIe3R2419MGGRtg93YJkij_CHZr2Tj8ehrTsnT9fxxdhst7m_uZpeLSMUFCxGrqiLVFSsQMGaac4VFConOc854Wig5XCdAAQIUkiVxFmcoc5Uhw0JwIZMpOd3l9s6-rtGHcmXXrhtWlgnLEpYDCD5QZztKOeu9w6rsnWml25YMyo8Wy6t0Pv9scTbA8AdWJshgbBecNM3_lpOdxXn1E_37mOQde3-BeA |
CitedBy_id | crossref_primary_10_1002_adfm_202421402 |
Cites_doi | 10.1126/science.abn3148 10.1002/adfm.201401872 10.1039/C9EE01773A 10.1016/j.joule.2019.06.014 10.1002/adma.201703852 10.1002/adma.202006435 10.1021/acs.jpcc.9b10185 10.1038/s41586-024-07764-8 10.1016/j.joule.2023.08.004 10.1038/s41586-023-06637-w 10.1016/j.nanoen.2023.108250 10.1126/science.aaz5074 10.1002/adma.201604048 10.1002/adma.202002585 10.1038/s41560-024-01567-x 10.1126/science.abm5784 10.1002/adma.202306051 10.1002/smll.202307645 10.1016/j.mtener.2020.100551 10.1038/s41560-021-00831-8 10.1002/aenm.202102973 10.1016/j.scib.2024.06.029 10.1126/science.adg3755 10.1002/adma.202312014 10.1002/solr.202100457 10.1016/j.cej.2022.136622 10.1021/jacs.6b06320 10.1038/nature12340 10.1016/j.nanoen.2020.105421 10.1016/j.nanoen.2020.105655 10.1038/s41586-024-07723-3 10.1002/adma.202108357 10.1038/s41586-023-06784-0 10.1002/aenm.201500477 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2025 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2025 |
DBID | AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
DOI | 10.1039/d4ee04419c |
DatabaseName | CrossRef Electronics & Communications Abstracts Environment Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Advanced Technologies Database with Aerospace Environment Abstracts |
DatabaseTitle | CrossRef Technology Research Database Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts Engineering Research Database Environment Abstracts Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1754-5706 |
EndPage | 1319 |
ExternalDocumentID | 10_1039_D4EE04419C d4ee04419c |
GroupedDBID | 0-7 0R~ 29G 4.4 5GY 705 70~ 7~J AAEMU AAIWI AAJAE AANOJ AARTK AAWGC AAXHV AAXPP ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACGFO ACGFS ACIWK ACLDK ADMRA ADSRN AEFDR AENEX AENGV AESAV AETIL AFLYV AFOGI AFRAH AFRZK AFVBQ AGEGJ AGRSR AHGCF AKBGW AKMSF ALMA_UNASSIGNED_HOLDINGS ANUXI APEMP ASKNT AUDPV AZFZN BLAPV BSQNT C6K CS3 EBS ECGLT EE0 EF- GGIMP GNO H13 HZ~ H~N J3I M4U N9A O-G O9- P2P RAOCF RCNCU RPMJG RRC RSCEA RVUXY SKA SLH TOV AAYXX CITATION 7SP 7ST 7TB 8FD C1K FR3 L7M SOI |
ID | FETCH-LOGICAL-c281t-1ff84df18e0e21d55ce8403d7751548cad4e90c0e008a132626ea7c6e1e8959a3 |
ISSN | 1754-5692 |
IngestDate | Mon Jun 30 11:56:32 EDT 2025 Tue Jul 01 01:46:04 EDT 2025 Thu Apr 24 23:09:51 EDT 2025 Tue May 27 12:02:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c281t-1ff84df18e0e21d55ce8403d7751548cad4e90c0e008a132626ea7c6e1e8959a3 |
Notes | https://doi.org/10.1039/d4ee04419c Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7631-3589 0000-0002-1402-4148 0000-0003-1012-1781 0000-0002-3700-6591 |
PQID | 3163170095 |
PQPubID | 2047494 |
PageCount | 1 |
ParticipantIDs | crossref_primary_10_1039_D4EE04419C rsc_primary_d4ee04419c crossref_citationtrail_10_1039_D4EE04419C proquest_journals_3163170095 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-02-04 |
PublicationDateYYYYMMDD | 2025-02-04 |
PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Energy & environmental science |
PublicationYear | 2025 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Jacobsson (D4EE04419C/cit26/1) 2016; 138 Kim (D4EE04419C/cit32/1) 2019; 3 Azmi (D4EE04419C/cit31/1) 2022; 376 Bai (D4EE04419C/cit13/1) 2022; 378 Niu (D4EE04419C/cit30/1) 2021; 12 Huang (D4EE04419C/cit2/1) 2023; 623 Jiang (D4EE04419C/cit19/1) 2017; 2 Yu (D4EE04419C/cit22/1) 2014; 24 Liu (D4EE04419C/cit3/1) 2024; 633 Ren (D4EE04419C/cit25/1) 2021; 81 Chen (D4EE04419C/cit10/1) 2016; 28 Liu (D4EE04419C/cit4/1) 2024; 632 Jiang (D4EE04419C/cit20/1) 2017; 29 Wang (D4EE04419C/cit35/1) 2024; 36 Yang (D4EE04419C/cit12/1) 2021; 33 Zeng (D4EE04419C/cit33/1) 2023; 35 Liang (D4EE04419C/cit14/1) 2023; 624 Xiao (D4EE04419C/cit6/1) 2024; 9 Yang (D4EE04419C/cit18/1) 2020; 32 Xu (D4EE04419C/cit28/1) 2020; 367 D4EE04419C/cit1/1 Deng (D4EE04419C/cit27/1) 2021; 6 Yang (D4EE04419C/cit11/1) 2024; 69 Ma (D4EE04419C/cit16/1) 2023; 108 Yang (D4EE04419C/cit17/1) 2021; 5 Burschka (D4EE04419C/cit15/1) 2013; 499 Bing (D4EE04419C/cit21/1) 2020; 18 Francisco-López (D4EE04419C/cit36/1) 2020; 124 Wang (D4EE04419C/cit34/1) 2022; 34 Conings (D4EE04419C/cit7/1) 2015; 5 Noel (D4EE04419C/cit24/1) 2019; 12 Wang (D4EE04419C/cit8/1) 2023; 20 Zhu (D4EE04419C/cit9/1) 2023; 7 Zhidkov (D4EE04419C/cit23/1) 2021; 79 Wang (D4EE04419C/cit29/1) 2022; 444 Zhang (D4EE04419C/cit5/1) 2023; 380 |
References_xml | – volume: 378 start-page: 747 year: 2022 ident: D4EE04419C/cit13/1 publication-title: Science doi: 10.1126/science.abn3148 – volume: 24 start-page: 7102 year: 2014 ident: D4EE04419C/cit22/1 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201401872 – volume: 12 start-page: 3063 year: 2019 ident: D4EE04419C/cit24/1 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE01773A – volume: 3 start-page: 2179 year: 2019 ident: D4EE04419C/cit32/1 publication-title: Joule doi: 10.1016/j.joule.2019.06.014 – volume: 29 start-page: 1703852 year: 2017 ident: D4EE04419C/cit20/1 publication-title: Adv. Mater. doi: 10.1002/adma.201703852 – volume: 33 start-page: 2006435 year: 2021 ident: D4EE04419C/cit12/1 publication-title: Adv. Mater. doi: 10.1002/adma.202006435 – volume: 124 start-page: 3448 year: 2020 ident: D4EE04419C/cit36/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b10185 – volume: 633 start-page: 359 year: 2024 ident: D4EE04419C/cit3/1 publication-title: Nature doi: 10.1038/s41586-024-07764-8 – volume: 7 start-page: 2361 year: 2023 ident: D4EE04419C/cit9/1 publication-title: Joule doi: 10.1016/j.joule.2023.08.004 – volume: 623 start-page: 531 year: 2023 ident: D4EE04419C/cit2/1 publication-title: Nature doi: 10.1038/s41586-023-06637-w – volume: 108 start-page: 108250 year: 2023 ident: D4EE04419C/cit16/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2023.108250 – volume: 2 start-page: 1 year: 2017 ident: D4EE04419C/cit19/1 publication-title: Nat. Energy – volume: 367 start-page: 1097 year: 2020 ident: D4EE04419C/cit28/1 publication-title: Science doi: 10.1126/science.aaz5074 – volume: 28 start-page: 10718 year: 2016 ident: D4EE04419C/cit10/1 publication-title: Adv. Mater. doi: 10.1002/adma.201604048 – volume: 32 start-page: 2002585 year: 2020 ident: D4EE04419C/cit18/1 publication-title: Adv. Mater. doi: 10.1002/adma.202002585 – volume: 9 start-page: 999 year: 2024 ident: D4EE04419C/cit6/1 publication-title: Nat. Energy doi: 10.1038/s41560-024-01567-x – volume: 376 start-page: 73 year: 2022 ident: D4EE04419C/cit31/1 publication-title: Science doi: 10.1126/science.abm5784 – volume: 35 start-page: 2306051 year: 2023 ident: D4EE04419C/cit33/1 publication-title: Adv. Mater. doi: 10.1002/adma.202306051 – volume: 20 start-page: 2307645 year: 2023 ident: D4EE04419C/cit8/1 publication-title: Small doi: 10.1002/smll.202307645 – volume: 18 start-page: 100551 year: 2020 ident: D4EE04419C/cit21/1 publication-title: Mater. Today Energy doi: 10.1016/j.mtener.2020.100551 – volume: 6 start-page: 633 year: 2021 ident: D4EE04419C/cit27/1 publication-title: Nat. Energy doi: 10.1038/s41560-021-00831-8 – volume: 12 start-page: 2102973 year: 2021 ident: D4EE04419C/cit30/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202102973 – volume: 69 start-page: 2555 year: 2024 ident: D4EE04419C/cit11/1 publication-title: Sci. Bull. doi: 10.1016/j.scib.2024.06.029 – volume: 380 start-page: 404 year: 2023 ident: D4EE04419C/cit5/1 publication-title: Science doi: 10.1126/science.adg3755 – volume: 36 start-page: 2312014 year: 2024 ident: D4EE04419C/cit35/1 publication-title: Adv. Mater. doi: 10.1002/adma.202312014 – volume: 5 start-page: 2100457 year: 2021 ident: D4EE04419C/cit17/1 publication-title: Sol. RRL doi: 10.1002/solr.202100457 – ident: D4EE04419C/cit1/1 – volume: 444 start-page: 136622 year: 2022 ident: D4EE04419C/cit29/1 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2022.136622 – volume: 138 start-page: 10331 year: 2016 ident: D4EE04419C/cit26/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b06320 – volume: 499 start-page: 316 year: 2013 ident: D4EE04419C/cit15/1 publication-title: Nature doi: 10.1038/nature12340 – volume: 79 start-page: 105421 year: 2021 ident: D4EE04419C/cit23/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105421 – volume: 81 start-page: 105655 year: 2021 ident: D4EE04419C/cit25/1 publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105655 – volume: 632 start-page: 536 year: 2024 ident: D4EE04419C/cit4/1 publication-title: Nature doi: 10.1038/s41586-024-07723-3 – volume: 34 start-page: 2108357 year: 2022 ident: D4EE04419C/cit34/1 publication-title: Adv. Mater. doi: 10.1002/adma.202108357 – volume: 624 start-page: 557 year: 2023 ident: D4EE04419C/cit14/1 publication-title: Nature doi: 10.1038/s41586-023-06784-0 – volume: 5 start-page: 1500477 year: 2015 ident: D4EE04419C/cit7/1 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500477 |
SSID | ssj0062079 |
Score | 2.5158215 |
Snippet | The multi-scale chemical phase heterogeneity of halide perovskites seriously affects the physical functional integrity of semiconductors and the performance of... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 131 |
SubjectTerms | Ammonium Ammonium chloride Charge efficiency Chloride transport Crystallites Crystals Current carriers Energy conversion efficiency Heterogeneity Homogeneity Integrity Perovskites Photovoltaic cells Photovoltaics Physicochemical properties Semiconductors Solar cells Structural stability |
Title | Phase homogeneity mediated charge-carrier balance in two-step-method halide perovskite photovoltaics |
URI | https://www.proquest.com/docview/3163170095 |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67gUeEF8ThYEswQtCGbbz6cdRChNICKRNjKfKtS9qpZFUXQIa_wL_NGcnTtLRh8FL1Lp2pOR-Pd-d735HyAstQOG-qQIjWR6g_c8DlWaRPS7MM6ZDS1Bisy0-JSdn0Yfz-Hw0-j3IWqqrxZH-tbOu5H-kimMoV1sl-w-S7W6KA_gZ5YtXlDBebyTjz0tlKYPL7yVOAWtPu0IQa0Q6BiQItNq4lnQLm8GoHUFI9bMMULTroGkebbuprAxY_uLyx6WN5b5aL8uqRLVVKZ8K70P3TaGgRcugQM6XVfYY-VI7VVaXXfzGh6WnyxqN0WVff_at_eF8pcqrug_v--lQXNXFMDQhXKl300y41aZpHAVx0jS7O4LBWMqS3Sq499CdPuVhm_QK_qvcqfdZaGlT30azGUP7Tk773c2f6F_b9LpURHcIH8p5v3aP7Av0OcSY7B9_fPP-q9_YE8EcdWP3VJ7tNpSv-9Xb9k3vtOxtfEcZZ7mc3iV3WpeDHjf4uUdGUNwntwdElA-IcUiiAyRRjyS6jSTaIomuCnoNSbRBEu2RRLeQ9JCcvZudTk-Ctv9GoEXGq4DneRaZnGfAQHATxxqyiIUmTWPr6GplIpBMM0A7UnH0A0QCKtUJcMhkLFV4QMZFWcAjQrXkC2Eg1lyjB2-YNFkuRGbyKAeVcJiQl_6tzXVLTm97pFzM_5bPhDzv5q4bSpadsw79y5-3f9nLeYjehyWklPGEHKBAuvX4JODW6cc3uvsTcqsH_CEZV5sanqJ1Wi2etaj5Az02kTQ |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+homogeneity+mediated+charge-carrier+balance+in+two-step-method+halide+perovskite+photovoltaics&rft.jtitle=Energy+%26+environmental+science&rft.au=Qu%2C+Duo&rft.au=Shang%2C+Chuanzhen&rft.au=Yang%2C+Xiaoyu&rft.au=Wang%2C+Chenyun&rft.date=2025-02-04&rft.issn=1754-5692&rft.eissn=1754-5706&rft.volume=18&rft.issue=3&rft.spage=1310&rft.epage=1319&rft_id=info:doi/10.1039%2FD4EE04419C&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D4EE04419C |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1754-5692&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1754-5692&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1754-5692&client=summon |