A comparison of alternate metabolic strategies for the utilization of D-arabinose

Mutants of Klebsiella aerogenes W70 that metabolize the uncommon pentose D-arabinose were isolated. These mutants were found to be either constitutive or indicible by D-arabinose for the synthesis of enzymes in the L-fucose pathway. Such mutants could then utilize L-fucose isomerase to convert the s...

Full description

Saved in:
Bibliographic Details
Published inJournal of molecular evolution Vol. 10; no. 2; p. 111
Main Authors St Martin, E J, Mortlock, R P
Format Journal Article
LanguageEnglish
Published Germany 25.11.1977
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Mutants of Klebsiella aerogenes W70 that metabolize the uncommon pentose D-arabinose were isolated. These mutants were found to be either constitutive or indicible by D-arabinose for the synthesis of enzymes in the L-fucose pathway. Such mutants could then utilize L-fucose isomerase to convert the structurally similar D-arabinose molecule to D-ribulose. D-Ribulose is an intermediate and the inducer of an existing ribitol pathway and could thus be metabolized. In those D-arabinose-positive mutants where the ribitol pathway was blocked by mutation, D-ribulose could alternatively be metabolized by using the remaining L-fucose pathway enzymes. When the two D-arabinose catabolic routes were compared, catabolism of D-arabinose via the ribitol pathway was found to be more efficient. Catabolism of D-arabinose using the L-fucose pathway permitted D-ribulose to escape into the media and produced an unmetabolizable end product, L-glycolic acid. A comparison of growth using constitutive versus inducible control of the borrowed L-fucose isomerase did not reveal an advantage for one control type over the other. Several differences were observed, however, when we determined the degree to which these control mutations perturbed the normal functioning of the L-fucose and associated pathways. Growth of the constitutive mutant was impaired with L-fucose as substrate. The inducible-control mutant had altered growth characteristics on ribitol and L-rhamnose.
ISSN:0022-2844
DOI:10.1007/BF01751805