Temporal dependence of chlorophyll a–nutrient relationships in Lake Taihu: Drivers and management implications
Eutrophication and its associated algal blooms are principal environmental challenges confronting lakes worldwide. The empirical relationships between nutrient (total nitrogen, TN; total phosphorus, TP) and chlorophyll a (Chla) level are widely used as a theoretical basis for lake eutrophication man...
Saved in:
Published in | Journal of environmental management Vol. 306; p. 114476 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
15.03.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Eutrophication and its associated algal blooms are principal environmental challenges confronting lakes worldwide. The empirical relationships between nutrient (total nitrogen, TN; total phosphorus, TP) and chlorophyll a (Chla) level are widely used as a theoretical basis for lake eutrophication management. Here, seasonal environmental variables and Chla from 2005 to 2020 in Chinese shallow eutrophic Lake Taihu were examined and Chla-nutrient equations in the entire period and annually from 2005 to 2020 were explored using 95% quantile regression model. The results showed robust linear relationships of logChla-logTN and logChla-logTP in the vast majority of cases. Based on Chla-nutrient equations in the entire study period, 0.69 mg/L TN and 52 μg/L TP are recommended as nutrient threshold in Lake Taihu. Furthermore, the results revealed increasing Chla sensitivity to nutrient for each study month (i.e. February, May, August, and November) from 2005 to 2020, whose drivers included increase in water temperature and water level, decrease in wind speed, mass ratio of nitrogen to phosphorus, and grazing effect. It is noteworthy that atmospheric stilling is likely to be the key climatic factor promoting annual peak Chla in Lake Taihu. For one, the deviations of the sub-index of Trophic State Index indicated that light is a critical limiting factor of summer Chla in Lake Taihu. For another, calmer water mainly due to atmospheric stilling decreased near 40% non-algal turbidity and a substantially increased buoyant cyanobacteria during the study period, improving phytoplankton “light niche”. Thus, increasing algal sensitivity to nutrient occurred until the additional algal-turbidity induce further light limitations or the exhaustion of TN (or TP) cause nutrient limitation. Given atmospheric stilling is a global phenomenon, this study would affect future algal bloom mitigation efforts in shallow lakes as temperature is always the focus in the recent literatures on global climate change.
[Display omitted]
•Nitrogen and phosphorus reduction targets in Lake Taihu were proposed.•Increasing algal sensitivity to nutrients from 2005 to 2020 were observed in Lake Taihu.•A more stable water column led to the increasing annual peak Chla from 2005 to 2020.•Water stability promotes algal growth mainly by increasing light availability. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0301-4797 1095-8630 |
DOI: | 10.1016/j.jenvman.2022.114476 |