Designing novel thin film polycrystalline solar cells for high efficiency:sandwich CIGS and heterojunction perovskite

Heterojunction and sandwich architectures are two new-type structures with great potential for solar cells.Specifically,the heterojunction structure possesses the advantages of efficient charge separation but suffers from band offset and large interface recombination;the sandwich configuration is fa...

Full description

Saved in:
Bibliographic Details
Published inJournal of semiconductors Vol. 38; no. 1; pp. 71 - 76
Main Authors Wang, Tianyue, Chen, Jiewei, Wu, Gaoxiang, Song, Dandan, Li, Meicheng
Format Journal Article
LanguageEnglish
Published 2017
Online AccessGet full text

Cover

Loading…
More Information
Summary:Heterojunction and sandwich architectures are two new-type structures with great potential for solar cells.Specifically,the heterojunction structure possesses the advantages of efficient charge separation but suffers from band offset and large interface recombination;the sandwich configuration is favorable for transferring carriers but requires complex fabrication process.Here,we have designed two thin-film polycrystalline solar cells with novel structures:sandwich CIGS and heterojunction perovskite,referring to the advantages of the architectures of sandwich perovskite(standard)and heterojunction CIGS(standard)solar cells,respectively.A reliable simulation software wxAMPS is used to investigate their inherent characteristics with variation of the thickness and doping density of absorber layer.The results reveal that sandwich CIGS solar cell is able to exhibit an optimized efficiency of 20.7%,which is much higher than the standard heterojunction CIGS structure(18.48%).The heterojunction perovskite solar cell can be more efficient employing thick and doped perovskite films(16.9%)than these typically utilizing thin and weak-doping/intrinsic perovskite films(9.6%).This concept of structure modulation proves to be useful and can be applicable for other solar cells.
Bibliography:11-5781/TN
sandwich CIGS solar cell; heterojunction perovskite solar cell; simulation; wxAMPS
Heterojunction and sandwich architectures are two new-type structures with great potential for solar cells.Specifically,the heterojunction structure possesses the advantages of efficient charge separation but suffers from band offset and large interface recombination;the sandwich configuration is favorable for transferring carriers but requires complex fabrication process.Here,we have designed two thin-film polycrystalline solar cells with novel structures:sandwich CIGS and heterojunction perovskite,referring to the advantages of the architectures of sandwich perovskite(standard)and heterojunction CIGS(standard)solar cells,respectively.A reliable simulation software wxAMPS is used to investigate their inherent characteristics with variation of the thickness and doping density of absorber layer.The results reveal that sandwich CIGS solar cell is able to exhibit an optimized efficiency of 20.7%,which is much higher than the standard heterojunction CIGS structure(18.48%).The heterojunction perovskite solar cell can be more efficient employing thick and doped perovskite films(16.9%)than these typically utilizing thin and weak-doping/intrinsic perovskite films(9.6%).This concept of structure modulation proves to be useful and can be applicable for other solar cells.
ISSN:1674-4926
DOI:10.1088/1674-4926/38/1/014005