Effect of Chirality on the Electronic Transport Properties of the Thioxanthene-Based Molecular Switch
Based on the nonequilibrium Green function method and density functional theory calculations, we theoretically investigate the effect of chirality on the electronic transport properties of thioxanthene-based molecular switch. The molecule comprises the switch which can exhibit different chiralities,...
Saved in:
Published in | Chinese physics letters Vol. 33; no. 4; pp. 108 - 112 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.04.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0256-307X 1741-3540 |
DOI | 10.1088/0256-307X/33/4/047101 |
Cover
Summary: | Based on the nonequilibrium Green function method and density functional theory calculations, we theoretically investigate the effect of chirality on the electronic transport properties of thioxanthene-based molecular switch. The molecule comprises the switch which can exhibit different chiralities, that is, cis-form and trans-form by ultraviolet or visible irradiation. The results clearly reveal that the switching behaviors can be realized when the molecule converts between cis-form and trans-form. ~urthermore, the on-off ratio can be modulated by the chirality of the carbon nanotube electrodes. The maximum on-off ratio can reach 109 at 0.4 V for the armchair junction, suggesting potential applications of this type of junctions in future design of functional molecular devices. |
---|---|
Bibliography: | 11-1959/O4 Cai-Juan Xia, Bo-Qun Zhang, Mao Yang Chun-Lan Wang, Ai-Yun Yang School of Science, Xi'an Polytechnic University, Xi'an 710048 Based on the nonequilibrium Green function method and density functional theory calculations, we theoretically investigate the effect of chirality on the electronic transport properties of thioxanthene-based molecular switch. The molecule comprises the switch which can exhibit different chiralities, that is, cis-form and trans-form by ultraviolet or visible irradiation. The results clearly reveal that the switching behaviors can be realized when the molecule converts between cis-form and trans-form. ~urthermore, the on-off ratio can be modulated by the chirality of the carbon nanotube electrodes. The maximum on-off ratio can reach 109 at 0.4 V for the armchair junction, suggesting potential applications of this type of junctions in future design of functional molecular devices. |
ISSN: | 0256-307X 1741-3540 |
DOI: | 10.1088/0256-307X/33/4/047101 |