Behavior of lysozyme adsorbed onto biological liquid crystal lipid monolayer at the air/water interface

The interaction between proteins and lipids is one of the basic problems of modern biochemistry and biophysics.The purpose of this study is to compare the penetration degree of lysozyme into 1,2-diapalmitoyl-sn-glycero-3-phosphocholine(DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethano-lamine(DPPE...

Full description

Saved in:
Bibliographic Details
Published inChinese physics B Vol. 25; no. 9; pp. 49 - 55
Main Author 逯晓龙 史瑞新 郝长春 陈欢 张蕾 李俊花 徐国庆 孙润广
Format Journal Article
LanguageEnglish
Published 01.09.2016
Subjects
Online AccessGet full text
ISSN1674-1056
2058-3834
DOI10.1088/1674-1056/25/9/090506

Cover

More Information
Summary:The interaction between proteins and lipids is one of the basic problems of modern biochemistry and biophysics.The purpose of this study is to compare the penetration degree of lysozyme into 1,2-diapalmitoyl-sn-glycero-3-phosphocholine(DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethano-lamine(DPPE) by analyzing the data of surface pressure–area(π–A) isotherms and surface pressure–time(π–T) curves.Lysozyme can penetrate into both DPPC and DPPE monolayers because of the increase of surface pressure at an initial pressure of 15 m N/m.However,the changes of DPPE are larger than DPPC,indicating stronger interaction of lysozyme with DPPE than DPPC.The reason may be due to the different head groups and phase state of DPPC and DPPE monolayers at the surface pressure of 15 m N/m.Atomic force microscopy reveals that lysozyme was absorbed by DPPC and DPPE monolayers,which leads to self-aggregation and self-assembly,forming irregular multimers and conical multimeric.Through analysis,we think that the process of polymer formation is similar to the aggregation mechanism of amyloid fibers.
Bibliography:lysozyme adsorption curves liquid crystal monolayers phase state
Xiaolong Lu, Ruixin Shi, Changchun Hao, Huan Chen Lei Zhang, Junhua Li, Guoqing Xu, and Runguang Sun (1 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710062, China 2School and Hospital of Stomatology, Jilin University, Changchun 130021, China)
11-5639/O4
The interaction between proteins and lipids is one of the basic problems of modern biochemistry and biophysics.The purpose of this study is to compare the penetration degree of lysozyme into 1,2-diapalmitoyl-sn-glycero-3-phosphocholine(DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphoethano-lamine(DPPE) by analyzing the data of surface pressure–area(π–A) isotherms and surface pressure–time(π–T) curves.Lysozyme can penetrate into both DPPC and DPPE monolayers because of the increase of surface pressure at an initial pressure of 15 m N/m.However,the changes of DPPE are larger than DPPC,indicating stronger interaction of lysozyme with DPPE than DPPC.The reason may be due to the different head groups and phase state of DPPC and DPPE monolayers at the surface pressure of 15 m N/m.Atomic force microscopy reveals that lysozyme was absorbed by DPPC and DPPE monolayers,which leads to self-aggregation and self-assembly,forming irregular multimers and conical multimeric.Through analysis,we think that the process of polymer formation is similar to the aggregation mechanism of amyloid fibers.
ISSN:1674-1056
2058-3834
DOI:10.1088/1674-1056/25/9/090506