MicroRNA-99b-5p downregulates protein synthesis in human primary myotubes
microRNAs (miRNAs) are important regulators of cellular homeostasis and exert their effect by directly controlling protein expression. We have previously reported an age-dependent negative association between microRNA-99b (miR-99b-5p) expression and muscle protein synthesis in human muscle in vivo....
Saved in:
Published in | American Journal of Physiology: Cell Physiology Vol. 319; no. 2; pp. C432 - C440 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
01.08.2020
|
Online Access | Get full text |
Cover
Loading…
Summary: | microRNAs (miRNAs) are important regulators of cellular homeostasis and exert their effect by directly controlling protein expression. We have previously reported an age-dependent negative association between microRNA-99b (miR-99b-5p) expression and muscle protein synthesis in human muscle in vivo. Here we investigated the role of miR-99b-5p as a potential negative regulator of protein synthesis via inhibition of mammalian target for rapamycin (MTOR) signaling in human primary myocytes. Overexpressing miR-99b-5p in human primary myotubes from young and old subjects significantly decreased protein synthesis with no effect of donor age. A binding interaction between miR-99b-5p and its putative binding site within the MTOR 3′-untranslated region (UTR) was confirmed in C
2
C
12
myoblasts. The observed decline in protein synthesis was, however, not associated with a suppression of the MTOR protein but of its regulatory associated protein of mTOR complex 1 (RPTOR). These results demonstrate that modulating the expression levels of a miRNA can regulate protein synthesis in human muscle cells and provide a potential mechanism for muscle wasting in vivo. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 0363-6143 1522-1563 1522-1563 |
DOI: | 10.1152/ajpcell.00172.2020 |