Conformal frequency selective rasorber in S, C, X-band with low backward-scattering
In this paper, a polarization-insensitive high transmittance bandpass filter with low radar cross section (RCS) in both S- and X-band is proposed. This is the first study to use the partition layout loading approach for conformal structures with transmissive windows, reducing the operating band RCS....
Saved in:
Published in | Optics express Vol. 32; no. 10; pp. 16879 - 16890 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
06.05.2024
|
Online Access | Get full text |
Cover
Loading…
Summary: | In this paper, a polarization-insensitive high transmittance bandpass filter with low radar cross section (RCS) in both S- and X-band is proposed. This is the first study to use the partition layout loading approach for conformal structures with transmissive windows, reducing the operating band RCS. Curved structures have stronger radiation at a smaller angle to the incident wave, and that is how their scattering differs from uniform scattering from flat structures. The structure is divided by analyzing the radiative contribution of different regions. The surface was discussed in regions according to surface angles, and a new partition layout loading method was used to suppress the side currents and decreased backward scattering, achieving a backward RCS reduction of more than 10 dB at 4-8 GHz (66.7%). The bandpass layer operating at 6.9 GHz is designed through equivalent circuit theory. In combination with the lossy layer, absorption above 0.8 at 3.7-5.6 GHz and 9.1-12.5 GHz was achieved. Further, the structure was fashioned into a curved surface with varying curvature, demonstrating its effective absorption and transmission properties across different curvatures. A 15 × 15 cell structure was designed and fabricated, and there was good agreement between the test results and simulation results. The proposed structure has important applications in radomes, conformal structures, and electromagnetic shielding. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.518735 |